Face-Based Age and Gender Classification Using Deep Learning Model

Author(s):  
Olatunbosun Agbo-Ajala ◽  
Serestina Viriri
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Avishek Garain ◽  
Biswarup Ray ◽  
Pawan Kumar Singh ◽  
Ali Ahmadian ◽  
Norazak Senu ◽  
...  

2021 ◽  
Vol 7 (10) ◽  
pp. 204
Author(s):  
Vatsa S. Patel ◽  
Zhongliang Nie ◽  
Trung-Nghia Le ◽  
Tam V. Nguyen

Face recognition with wearable items has been a challenging task in computer vision and involves the problem of identifying humans wearing a face mask. Masked face analysis via multi-task learning could effectively improve performance in many fields of face analysis. In this paper, we propose a unified framework for predicting the age, gender, and emotions of people wearing face masks. We first construct FGNET-MASK, a masked face dataset for the problem. Then, we propose a multi-task deep learning model to tackle the problem. In particular, the multi-task deep learning model takes the data as inputs and shares their weight to yield predictions of age, expression, and gender for the masked face. Through extensive experiments, the proposed framework has been found to provide a better performance than other existing methods.


2021 ◽  
pp. 425-437
Author(s):  
Tejas Agarwal ◽  
Mira Andhale ◽  
Anand Khule ◽  
Rushikesh Borse

2018 ◽  
Vol 275 ◽  
pp. 448-461 ◽  
Author(s):  
Mingxing Duan ◽  
Kenli Li ◽  
Canqun Yang ◽  
Keqin Li

2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2020 ◽  
Vol 197 ◽  
pp. 105674
Author(s):  
Dingding Yu ◽  
Kaijie Zhang ◽  
Lingyan Huang ◽  
Bonan Zhao ◽  
Xiaoshan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document