Soil Water Dynamics on Irrigated Garlic and Pepper Crops Using Hydrus–1D Model in the Lake Tana-Basin, Northwestern Ethiopia

Author(s):  
Enguday Bekele ◽  
Seifu Tilahun ◽  
Abebech Beyene ◽  
Sisay Asres ◽  
Berhanu Geremew ◽  
...  
2018 ◽  
Vol 66 (2) ◽  
pp. 232-245 ◽  
Author(s):  
Vakhtang Shelia ◽  
Jirka Šimůnek ◽  
Ken Boote ◽  
Gerrit Hoogenbooom

AbstractAccurate estimation of the soil water balance of the soil-plant-atmosphere system is key to determining the availability of water resources and their optimal management. Evapotranspiration and leaching are the main sinks of water from the system affecting soil water status and hence crop yield. The accuracy of soil water content and evapotranspiration simulations affects crop yield simulations as well. DSSAT is a suite of field-scale, process-based crop models to simulate crop growth and development. A “tipping bucket” water balance approach is currently used in DSSAT for soil hydrologic and water redistribution processes. By comparison, HYDRUS-1D is a hydrological model to simulate water flow in soils using numerical solutions of the Richards equation, but its approach to crop-related process modeling is rather limited. Both DSSAT and HYDRUS-1D have been widely used and tested in their separate areas of use. The objectives of our study were: (1) to couple HYDRUS-1D with DSSAT to simulate soil water dynamics, crop growth and yield, (2) to evaluate the coupled model using field experimental datasets distributed with DSSAT for different environments, and (3) to compare HYDRUS-1D simulations with those of the tipping bucket approach using the same datasets. Modularity in the software design of both DSSAT and HYDRUS-1D made it easy to couple the two models. The pairing provided the DSSAT interface an ability to use both the tipping bucket and HYDRUS-1D simulation approaches. The two approaches were evaluated in terms of their ability to estimate the soil water balance, especially soil water contents and evapotranspiration rates. Values of thedindex for volumetric water contents were 0.9 and 0.8 for the original and coupled models, respectively. Comparisons of simulations for the pod mass for four soybean and four peanut treatments showed relatively highdindex values for both models (0.94–0.99).


2020 ◽  
Vol 10 (4) ◽  
pp. 1219 ◽  
Author(s):  
Mazhar Iqbal ◽  
Md Rowshon Kamal ◽  
Mohd Fazly M. ◽  
Hasfalina Che Man ◽  
Aimrun Wayayok

Assessment of soil water balance is essential to understand water dynamics for optimal use of water and fertilizers. The study intended to simulate soil water dynamics in sweet corn production under tropical rainfed conditions. Surface runoff, subsurface leaching, and evapotranspiration are the main components of water balance, especially in tropical environments. Therefore, intensive field experiments and HYDRUS-1D numerical modeling were applied to investigate the water balance components and analyzing water dynamics. The study was carried out in a sweet corn field for two growing seasons under the rainfed conditions at the Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Malaysia. The total water inputs during the first and second seasons were 75.8 cm and 79.7 cm, respectively. Simulated results of evapotranspiration (ET) accounted for 40.7% and 33.1% of total water input during the first and second seasons. Surface runoff accounted for 41% and 28.6% in the first and second season, respectively. Water leaching accounted for 10.6%–26.8% of total water input during both seasons respectively. As rainfall fulfilled the crop water requirement throughout the growing seasons no additional irrigation was required. The overall simulation results validate the HYDRUS-1D as an effective tool to simulate soil water dynamics under rainfed conditions.


2021 ◽  
Author(s):  
Emeka Ndulue ◽  
Afua Adobea Mante ◽  
Ramanathan Sri Ran

Abstract Soil water content (SWC) plays a critical role in crop yield, irrigation scheduling, and water resources management. In the Canadian Prairies, the water content in the rootzone replenished by rainfall is rarely sufficient to satisfy crop water requirements. Thus, the need for robust and effective water management. Hydrologic modelling provides the opportunity to understand the underlying processes controlling and affecting soil water movement and distribution. Evapotranspiration (ET) is an important input of hydrologic models; thus, the estimation of ET could have significant consequences on modelling outcome and inference. The FAO Penman-Monteith (PM) is the recommended model for estimating the reference crop evapotranspiration (ETo). However, it is limited by requiring too many weather variables that are not readily available. Simple empirical ETo models have been developed as an alternative. In this study, six ETo models with different inputs were used to simulate soil water dynamics in a rainfed potato farm in Winkler, Manitoba, using the HYDRUS-1D model. The results showed that when used to simulate SWC, all the models followed a similar pattern, although a significant difference was observed at shallow depth (20 cm). Specifically, a significant difference (p < 0.05) was observed between observed and simulated SWC from Hargreaves Samani, Romanenko, Penman, and FAO-PM (missing) models. When used to simulate the crop evapotranspiration (ETc), there was no significant difference (p > 0.05) between observed and simulated ETc from FAO PM, Irmak, and Priestly – Taylor models. Hence, ETo models with fewer data inputs such as Irmak and Priestly – Taylor models can provide accurate and reliable results for water management in southern Manitoba.


2021 ◽  
Author(s):  
Matteo Longo ◽  
Curtis Dinnen Jones ◽  
Roberto César Izaurralde ◽  
Miguel L. Cabrera ◽  
Nicola Dal Ferro ◽  
...  

2020 ◽  
Vol 83 ◽  
pp. 371-385 ◽  
Author(s):  
Ángel del Vigo ◽  
Sergio Zubelzu ◽  
Luis Juana

Sign in / Sign up

Export Citation Format

Share Document