scholarly journals Fold/Unfold Transformations for Fixpoint Logic

Author(s):  
Naoki Kobayashi ◽  
Grigory Fedyukovich ◽  
Aarti Gupta

Abstract Fixpoint logics have recently been drawing attention as common foundations for automated program verification. We formalize fold/unfold transformations for fixpoint logic formulas and show how they can be used to enhance a recent fixpoint-logic approach to automated program verification, including automated verification of relational and temporal properties. We have implemented the transformations in a tool and confirmed its effectiveness through experiments.

2021 ◽  
pp. 21-38
Author(s):  
Cláudio Belo Lourenço ◽  
Denis Cousineau ◽  
Florian Faissole ◽  
Claude Marché ◽  
David Mentré ◽  
...  

2020 ◽  
Vol 63 (4) ◽  
pp. 1270-1281
Author(s):  
Leah Fostick ◽  
Riki Taitelbaum-Swead ◽  
Shulamith Kreitler ◽  
Shelly Zokraut ◽  
Miriam Billig

Purpose Difficulty in understanding spoken speech is a common complaint among aging adults, even when hearing impairment is absent. Correlational studies point to a relationship between age, auditory temporal processing (ATP), and speech perception but cannot demonstrate causality unlike training studies. In the current study, we test (a) the causal relationship between a spatial–temporal ATP task (temporal order judgment [TOJ]) and speech perception among aging adults using a training design and (b) whether improvement in aging adult speech perception is accompanied by improved self-efficacy. Method Eighty-two participants aged 60–83 years were randomly assigned to a group receiving (a) ATP training (TOJ) over 14 days, (b) non-ATP training (intensity discrimination) over 14 days, or (c) no training. Results The data showed that TOJ training elicited improvement in all speech perception tests, which was accompanied by increased self-efficacy. Neither improvement in speech perception nor self-efficacy was evident following non-ATP training or no training. Conclusions There was no generalization of the improvement resulting from TOJ training to intensity discrimination or generalization of improvement resulting from intensity discrimination training to speech perception. These findings imply that the effect of TOJ training on speech perception is specific and such improvement is not simply the product of generally improved auditory perception. It provides support for the idea that temporal properties of speech are indeed crucial for speech perception. Clinically, the findings suggest that aging adults can be trained to improve their speech perception, specifically through computer-based auditory training, and this may improve perceived self-efficacy.


2017 ◽  
Author(s):  
Darren Rhodes

Time is a fundamental dimension of human perception, cognition and action, as the perception and cognition of temporal information is essential for everyday activities and survival. Innumerable studies have investigated the perception of time over the last 100 years, but the neural and computational bases for the processing of time remains unknown. First, we present a brief history of research and the methods used in time perception and then discuss the psychophysical approach to time, extant models of time perception, and advancing inconsistencies between each account that this review aims to bridge the gap between. Recent work has advocated a Bayesian approach to time perception. This framework has been applied to both duration and perceived timing, where prior expectations about when a stimulus might occur in the future (prior distribution) are combined with current sensory evidence (likelihood function) in order to generate the perception of temporal properties (posterior distribution). In general, these models predict that the brain uses temporal expectations to bias perception in a way that stimuli are ‘regularized’ i.e. stimuli look more like what has been seen before. Evidence for this framework has been found using human psychophysical testing (experimental methods to quantify behaviour in the perceptual system). Finally, an outlook for how these models can advance future research in temporal perception is discussed.


2019 ◽  
Vol 8 (3) ◽  
pp. 5926-5929

Blind forensic-investigation in a digital image is a new research direction in image security. It aims to discover the altered image content without any embedded security scheme. Block and key point based methods are the two dispensation options in blind image forensic investigation. Both the techniques exhibit the best performance to reveal the tampered image. The success of these methods is limited due to computational complexity and detection accuracy against various image distortions and geometric transformation operations. This article introduces different blind image tampering methods and introduces a robust image forensic investigation method to determine the copy-move tampered image by means of fuzzy logic approach. Empirical outcomes facilitate that the projected scheme effectively classifies copy-move type of forensic images as well as blurred tampered image. Overall detection accuracy of this method is high over the existing methods.


Sign in / Sign up

Export Citation Format

Share Document