Wood Deterioration by Aquatic Microorganisms

Author(s):  
Anastasia Pournou
2019 ◽  
Vol 85 (21) ◽  
Author(s):  
Meng Zhang ◽  
Tao Lu ◽  
Hans W. Paerl ◽  
Yiling Chen ◽  
Zhenyan Zhang ◽  
...  

ABSTRACT The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems. IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated.


2017 ◽  
Vol 14 (7) ◽  
pp. 458 ◽  
Author(s):  
Perrine Dranguet ◽  
Vera I. Slaveykova ◽  
Séverine Le Faucheur

Environmental contextMercury (Hg) is a major environmental contaminant due to its toxicity, accumulation and biomagnification along the food chain. We demonstrate that Hg accumulation by biofilms, one possible entry point for Hg into food webs, is rapid and depends on biofilm structure and composition. These findings have important implications for the understanding of Hg bioavailability and effects towards aquatic microorganisms. AbstractMercury contamination is of high concern due to its bioaccumulation, toxicity and biomagnification along the food chain. Biofilms can accumulate Hg and contribute to its incorporation in freshwater food webs. Nevertheless, the accumulation kinetics of Hg by biofilms is not well described and understood. The aim of the present study was thus to gain mechanistic understanding of Hg accumulation by biofilms. Kinetics of Hg uptake by biofilms of different ages (e.g. different compositions) was characterised by determining Hg contents in biofilms with and without a cysteine-washing step. Hg accumulation was rapid in both biofilms, with the uptake rate constant of the younger biofilm 10 times higher than that of the older biofilm. Moreover, accumulated Hg reached a plateau at 24h exposure in the younger biofilm, whereas it increased linearly in the older biofilm. The observed difference in Hg uptake by the studied biofilms is likely a result of the difference in biofilm thickness (and thus Hg diffusion inside the biofilm matrix) and microbial composition. These findings have important implications for the understanding of Hg bioavailability and effects towards aquatic microorganisms.


2017 ◽  
Vol 10 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Effendi Tri Bahtiar ◽  
Naresworo Nugroho ◽  
Dede Hermawan ◽  
Wilis Wirawan ◽  
Arinana . ◽  
...  

2018 ◽  
Vol 13 (3) ◽  
pp. 563-575 ◽  
Author(s):  
Vicente I. Fernandez ◽  
Yutaka Yawata ◽  
Roman Stocker

Sign in / Sign up

Export Citation Format

Share Document