scholarly journals Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium Microcystis aeruginosa

2019 ◽  
Vol 85 (21) ◽  
Author(s):  
Meng Zhang ◽  
Tao Lu ◽  
Hans W. Paerl ◽  
Yiling Chen ◽  
Zhenyan Zhang ◽  
...  

ABSTRACT The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems. IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated.

2017 ◽  
Vol 14 (16) ◽  
pp. 3831-3849 ◽  
Author(s):  
Katharine J. Crawfurd ◽  
Santiago Alvarez-Fernandez ◽  
Kristina D. A. Mojica ◽  
Ulf Riebesell ◽  
Corina P. D. Brussaard

Abstract. Ocean acidification resulting from the uptake of anthropogenic carbon dioxide (CO2) by the ocean is considered a major threat to marine ecosystems. Here we examined the effects of ocean acidification on microbial community dynamics in the eastern Baltic Sea during the summer of 2012 when inorganic nitrogen and phosphorus were strongly depleted. Large-volume in situ mesocosms were employed to mimic present, future and far future CO2 scenarios. All six groups of phytoplankton enumerated by flow cytometry ( <  20 µm cell diameter) showed distinct trends in net growth and abundance with CO2 enrichment. The picoeukaryotic phytoplankton groups Pico-I and Pico-II displayed enhanced abundances, whilst Pico-III, Synechococcus and the nanoeukaryotic phytoplankton groups were negatively affected by elevated fugacity of CO2 (fCO2). Specifically, the numerically dominant eukaryote, Pico-I, demonstrated increases in gross growth rate with increasing fCO2 sufficient to double its abundance. The dynamics of the prokaryote community closely followed trends in total algal biomass despite differential effects of fCO2 on algal groups. Similarly, viral abundances corresponded to prokaryotic host population dynamics. Viral lysis and grazing were both important in controlling microbial abundances. Overall our results point to a shift, with increasing fCO2, towards a more regenerative system with production dominated by small picoeukaryotic phytoplankton.


2018 ◽  
Author(s):  
Valentina Valdés ◽  
François Carlotti ◽  
Ruben Escribano ◽  
Katty Donoso ◽  
Marc Pagano ◽  
...  

Abstract. Zooplankton play a key role in the regeneration of nitrogen and phosphorus in the ocean through grazing and metabolism. This study investigates the role of the organic and inorganic nitrogen and phosphorus compounds released by copepods on biogeochemical processes and on the microbial community composition during the OUTPACE cruise (18 February–3 April 2015) at three long duration stations (LD). Two LD stations were located in the Melanesian Archipelago region (MA; LD A and LD B) and one in the South Pacific Gyre (SG; LD C), which represent oligotrophic and ultraoligotrophic regions respectively. At each station, microcosm onboard experiments were performed with locally sampled organisms, comprising a mix of epipelagic copepods fed with their natural food and then incubated along with wild microbial assemblages. In presence of copepods, ammonium and dissolved organic nitrogen showed a significant increase, compared to a control in two situations: in ammonium concentration (increasing rate: 0.29 μmol L−1 h−1 after 4 h of incubation) in LD C and in dissolved organic nitrogen concentration (rate: 2.13 μmol L−1 h−1 after 0.5 h of incubation) in LD A. In addition, during the three experiments, an enhanced remineralization (ammonification and nitrification) was observed when adding copepods compared to the controls. A shift in the composition of active bacterial community was observed for the experiments in LD A and LD B mainly characterized by an increase in Alteromonadales and SAR11, respectively and linked with changes in nutrient concentrations. In the experiment performed in LD C, both groups increased but at different periods of incubation, Alteromonadales between 1 and 2 h after the beginning of the experiment, and SAR 11 at the end of incubation. Finally, our experimental results in near in situ conditions, show that copepods can be a source of organic and inorganic compounds for bacterial communities, which respond to excretion pulses at different scales, depending on the initial environmental conditions and on their community composition. These processes can contribute significantly to nutrient recycling in the epipelagic ecosystem of ultra and oligotrophic oceanic regions.


2018 ◽  
Vol 15 (20) ◽  
pp. 6019-6032 ◽  
Author(s):  
Valentina Valdés ◽  
François Carlotti ◽  
Ruben Escribano ◽  
Katty Donoso ◽  
Marc Pagano ◽  
...  

Abstract. Zooplankton play a key role in the regeneration of nitrogen and phosphorus in the ocean through grazing and metabolism. This study investigates the role of the organic and inorganic nitrogen and phosphorus compounds released by copepods on biogeochemical processes and on the microbial community composition during the OUTPACE cruise (18 February–3 April 2015) at three long-duration stations (LD). Two LD stations were located in the Melanesian Archipelago region (MA; LD A and LD B) and one in the South Pacific Gyre (SG; LD C), which represent oligotrophic and ultra-oligotrophic regions respectively. At each station, on-board microcosm experiments were performed with locally sampled organisms, comprising a mix of epipelagic copepods fed with their natural food and then incubated along with wild microbial assemblages. In the presence of copepods, ammonium and dissolved organic nitrogen showed a significant increase compared to a control in two situations: in ammonium concentration (rate: 0.29 µmol L−1 h−1 after 4 h of incubation) in LD C and in dissolved organic nitrogen concentration (rate: 2.13 µmol L−1 h−1 after 0.5 h of incubation) in LD A. In addition, during the three experiments, an enhanced remineralization (ammonification and nitrification) was observed when adding copepods compared to the controls. A shift in the composition of the active bacterial community was observed for the experiments in LD A and LD B, which were mainly characterized by an increase in Alteromonadales and SAR11, respectively, and linked with changes in nutrient concentrations. In the experiment performed in LD C, both groups increased but at different periods of incubation. Alteromonadales increased between 1 and 2 h after the beginning of the experiment, and SAR 11 at the end of incubation. Our results in near in situ conditions show that copepods can be a source of organic and inorganic compounds for bacterial communities, which respond to excretion pulses at different timescales, depending on the initial environmental conditions and on their community composition. These processes can significantly contribute to nutrient recycling and regenerated production in the photic zone of ultra-oligotrophic and oligotrophic oceanic regions.


2020 ◽  
Vol 85 ◽  
pp. 47-58
Author(s):  
Y Jiang ◽  
Y Liu

Various studies have observed that increased nutrient supply promotes the growth of bloom-forming cyanobacteria, but only a limited number of studies have investigated the influence of increased nutrient supply on bloom-forming cyanobacteria at the proteomic level. We investigated the cellular and proteomic responses of Microcystis aeruginosa to elevated nitrogen and phosphorus supply. Increased supply of both nutrients significantly promoted the growth of M. aeruginosa and the synthesis of chlorophyll a, protein, and microcystins. The release of microcystins and the synthesis of polysaccharides negatively correlated with the growth of M. aeruginosa under high nutrient levels. Overexpressed proteins related to photosynthesis, and amino acid synthesis, were responsible for the stimulatory effects of increased nutrient supply in M. aeruginosa. Increased nitrogen supply directly promoted cyanobacterial growth by inducing the overexpression of the cell division regulatory protein FtsZ. NtcA, that regulates gene transcription related to both nitrogen assimilation and microcystin synthesis, was overexpressed under the high nitrogen condition, which consequently induced overexpression of 2 microcystin synthetases (McyC and McyF) and promoted microcystin synthesis. Elevated nitrogen supply induced the overexpression of proteins involved in gas vesicle organization (GvpC and GvpW), which may increase the buoyancy of M. aeruginosa. Increased phosphorus level indirectly affected growth and the synthesis of cellular substances in M. aeruginosa through the mediation of differentially expressed proteins related to carbon and phosphorus metabolism. This study provides a comprehensive description of changes in the proteome of M. aeruginosa in response to an increased supply of 2 key nutrients.


2021 ◽  
Vol 11 (11) ◽  
pp. 4995
Author(s):  
Marco Custódio ◽  
Paulo Cartaxana ◽  
Sebastián Villasante ◽  
Ricardo Calado ◽  
Ana Isabel Lillebø

Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.


2011 ◽  
Vol 77 (19) ◽  
pp. 6972-6981 ◽  
Author(s):  
Ryan J. Newton ◽  
Jessica L. VandeWalle ◽  
Mark A. Borchardt ◽  
Marc H. Gorelick ◽  
Sandra L. McLellan

ABSTRACTThe complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within theLachnospiraceaefamily, which was closely related to the genusBlautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for humanBacteroidales(based on the HF183 genetic marker), totalBacteroidalesspp., and enterococci and the conventionalEscherichia coliand enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and humanBacteroidalesincreased specificity to detect sewage compared to general indicators, and the relationship to a human pathogen group suggests that the use of these alternative indicators will improve assessments for human health risks in urban waters.


2009 ◽  
Vol 55 (1) ◽  
pp. 420-432 ◽  
Author(s):  
Hai Xu ◽  
Hans W. Paerl ◽  
Boqiang Qin ◽  
Guangwei Zhu ◽  
Guang Gaoa

1986 ◽  
Vol 43 (8) ◽  
pp. 1504-1514 ◽  
Author(s):  
F. Joan Hardy ◽  
Ken S. Shortreed ◽  
John G. Stockner

Inorganic nitrogen and phosphorus were applied weekly during the growing season from 1980 to 1982 and twice weekly in 1983 to Hobiton Lake, a warm monomictic coastal lake in British Columbia. The lake was not fertilized in 1984. Average numbers of bacteria during the growing season decreased from a high of 1.53 × 106∙mL−1 in the fertilized condition to 0.84 × 106∙mL−1 in the unfertilized condition. Chlorophyll a concentrations decreased from a maximum seasonal average of 2.69 μg∙L−1 (1981) to 1.30 μg∙L−1 (1984), and algal numbers decreased from 5.83 × 104∙mL−1 (1983) to 2.29 × 104∙mL−1 (1984). Although the numbers of phytoplankton in each size fraction (picoplankton, nanoplankton, or microplankton) decreased in the unfertilized condition, the greatest change was an almost fourfold decrease in picoplankton, which consisted of 90% cyanobacteria (primarily Synechococcus spp.). Abundance of the large diatoms Rhizosolenia spp. and Melosira spp. increased in 1984, resulting in an increase in average seasonal algal volume. Average densities of medium (0.15–0.84 mm) and large (0.85–1.5 mm) zooplankton were greatest in 1982, while rotifers and small zooplankton (0.10–0.14 mm) were most dense in 1984 following nutrient reduction. The lake had relatively high concentrations of planktivorous juvenile sockeye salmon (Oncorhynchus nerka) that appeared to minimize any direct effect of nutrient additions on zooplankton densities.


2015 ◽  
Vol 35 (1) ◽  
pp. 64-71
Author(s):  
Guiyao Zhou ◽  
Yanyou Wu ◽  
Deke Xing ◽  
Mingming Zhang ◽  
Rui Yu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Tang ◽  
Ziyan Zhang ◽  
Shen Tian ◽  
Peng Cai

AbstractElectromagnetic radiation is an important environmental factor. It has a potential threat to public health and ecological environment. However, the mechanism by which electromagnetic radiation exerts these biological effects remains unclear. In this study, the effect of Microcystis aeruginosa under electromagnetic radiation (1.8 GHz, 40 V/m) was studied by using transcriptomics. A total of 306 differentially expressed genes, including 121 upregulated and 185 downregulated genes, were obtained in this study. The differentially expressed genes were significantly enriched in the ribosome, oxidative phosphorylation and carbon fixation pathways, indicating that electromagnetic radiation may inhibit protein synthesis and affect cyanobacterial energy metabolism and photosynthesis. The total ATP synthase activity and ATP content significantly increased, whereas H+K+-ATPase activity showed no significant changes. Our results suggest that the energy metabolism pathway may respond positively to electromagnetic radiation. In the future, systematic studies on the effects of electromagnetic radiation based on different intensities, frequencies, and exposure times are warranted; to deeply understand and reveal the target and mechanism of action of electromagnetic exposure on organisms.


Sign in / Sign up

Export Citation Format

Share Document