Heat Exchange Characteristics of Trays for Concentrating Solutions in Direct Contact with Hot Gas Emissions

Author(s):  
Musii Tseitlin ◽  
Valentyna Raiko ◽  
Oleksii Shestopalov
1990 ◽  
Vol 112 (3) ◽  
pp. 216-222 ◽  
Author(s):  
James R. Fair

Energy from hot gas discharge streams can be recovered by transfer directly to a coolant liquid in one of several available gas-liquid contacting devices. The design of the device is central to the theme of this paper, and experimental work has verified that the analogy between heat transfer and mass transfer can be used for design purposes. This enables the large amount of available mass transfer data for spray, packed, and tray columns to be used for heat transfer calculations. Recommended methods for designing the several types of gas-liquid contacting device are summarized.


Author(s):  
Ehsan Shakouri ◽  
Alimohammad Mobini

The performance of airbag and its deployment are based on a fast exothermic-chemical reaction. The hot gas resulting from the chemical reaction which results in airbag deployment can cause thermal damage and skin burning for the car passenger. The thermal burns due to airbags are of two types: burns due to direct contact with the airbag surface and burns resulting from exposure to the hot gas leaving the deflation vents of the airbag. In this research, for experimental study of the burns resulting from exposure of the skin to airbag, using infrared thermography, the extent of temperature rise of the airbag surface was detected and measured from the zero moment of its inflation. Next, using Henriques equation, the extent of thermal damage caused by airbag deployment and its resulting burn degree was calculated. The results indicated that during the inflation of airbag, the maximum temperature of its surface can be 92 °C ± 2 °C. Furthermore, if the vehicle’s safety system functions within the predicted time intervals, the risk of thermal damage is virtually zero. However, if even a slight delay occurs in detachment of the passenger’s head and face off the airbag, second- and third-degree burns could develop.


2002 ◽  
Author(s):  
Yutaka Kitamura ◽  
Tung Liang ◽  
Dan Paquin ◽  
Loren Gautz

1986 ◽  
Vol 9 (1) ◽  
pp. 63-79 ◽  
Author(s):  
A. H. ZAIDA ◽  
S. C. SARMA ◽  
P. D. GROVER ◽  
D. R. HELDMAN

Sign in / Sign up

Export Citation Format

Share Document