Seismic Analysis and Damage Evaluation of Pine Flat Concrete Dam

Author(s):  
M. Farrokh
2021 ◽  
pp. 107754632110005
Author(s):  
Payam Sotoudeh ◽  
Mohsen Ghaemian

One of the acceptable assumptions in engineering practice is vertical propagation of earthquake waves. When the source of earthquake is located very deep in the ground, this assumption is valid, but for sources located in shallow ground, it loses its viability. In this study, linear seismic analysis of a system of concrete dam-massed foundation-reservoir is performed under inclined earthquake excitation. Both P- and SV-type earthquakes are considered for the purpose of the seismic analysis. To consider the effects of inhomogeneous waves for the case of SV wave propagation, post-critical angles are also considered in the analysis. To investigate the effects of earthquake frequency content on the results, three different records with contents of low, intermediate, and high frequencies are selected. Results indicate that considering vertical propagation underestimates the obtained responses. For the case of SV-type earthquakes, post-critical angles must be looked at. Frequency content of the earthquake also has considerable effects on trend and absolute values of responses.


2004 ◽  
Vol 31 (6) ◽  
pp. 965-976 ◽  
Author(s):  
Najib Bouaanani ◽  
Patrick Paultre ◽  
Jean Proulx

This paper presents a numerical and parametric study of the effect of an ice cover on the dynamic response of a concrete dam using the approach proposed in the companion paper in this issue. The method was programmed and implemented in a finite element code specialized for the seismic analysis of concrete dams. The 84-m-high Outardes 3 concrete gravity dam in northeastern Quebec was chosen as a model for this research. Some basic aspects of the numerical model are established in this paper and we show that the ice cover affects the dynamic response of the ice–dam–reservoir system. Main features of this influence are emphasized and discussed in a parametric study through the analysis of: (i) acceleration frequency response curves at the dam crest, (ii) hydrodynamic frequency response curves inside the reservoir, and (iii) the hydrodynamic pressure distribution on the upstream face of the dam. Key words: gravity dams, concrete dams, ice, reservoirs, mathematical models, ice–structure interaction, fluid–structure interaction, forced-vibration testing, finite elements modelling.


Author(s):  
J. W. Salamon ◽  
C. Wood ◽  
M. A. Hariri-Ardebili ◽  
R. Malm ◽  
G. Faggiani

2004 ◽  
Vol 31 (6) ◽  
pp. 956-964 ◽  
Author(s):  
Najib Bouaanani ◽  
Patrick Paultre ◽  
Jean Proulx

This paper examines the dynamic response of a concrete dam impounding an ice-covered reservoir and subjected to forced-vibration testing. The analytical research presented is a follow-up to an extensive dynamic testing program carried out on a 84-m high concrete gravity dam located in northeastern Quebec, Canada, under harsh winter conditions, including a 1.0- to 1.5-m-thick ice sheet covering the reservoir. One of the major challenges encountered when analyzing ice-dam-reservoir-foundation interaction is modelling the complex nature of the ice and the boundary conditions governing reservoir motion. The problem is further complicated because there are little or no appropriate experimental data and observational evidence relevant to ice-dam interaction processes. Some of these challenges are addressed herein using a two-dimensional analytical approach, which investigates the effects due to ice cover, water compressibility, and reservoir bottom absorption. A frequency-domain substructure method technique is used and a new boundary condition along the ice-cover-reservoir interface is proposed. The technique developed is implemented in a finite element code specialized in the seismic analysis of concrete dams. Numerical results are discussed in the companion paper in this issue. Key words: gravity dams, concrete dams, ice, reservoirs, mathematical models, ice-structure interaction, fluid-structure interaction, forced-vibration testing, finite elements modelling.


Sign in / Sign up

Export Citation Format

Share Document