Seismic Analysis of Pine Flat Concrete Dam: Comparison of Numerical Results from 2D and 3D Analysis

Author(s):  
N. Monteiro Azevedo ◽  
M. L. Braga Farinha ◽  
R. Câmara ◽  
N. Schclar Leitão
2021 ◽  
pp. 107754632110005
Author(s):  
Payam Sotoudeh ◽  
Mohsen Ghaemian

One of the acceptable assumptions in engineering practice is vertical propagation of earthquake waves. When the source of earthquake is located very deep in the ground, this assumption is valid, but for sources located in shallow ground, it loses its viability. In this study, linear seismic analysis of a system of concrete dam-massed foundation-reservoir is performed under inclined earthquake excitation. Both P- and SV-type earthquakes are considered for the purpose of the seismic analysis. To consider the effects of inhomogeneous waves for the case of SV wave propagation, post-critical angles are also considered in the analysis. To investigate the effects of earthquake frequency content on the results, three different records with contents of low, intermediate, and high frequencies are selected. Results indicate that considering vertical propagation underestimates the obtained responses. For the case of SV-type earthquakes, post-critical angles must be looked at. Frequency content of the earthquake also has considerable effects on trend and absolute values of responses.


Author(s):  
Darrell W. Pepper ◽  
Jichun Li

In this paper, we develop a general multiblock mixed finite element method for solving 2D and 3D elliptic problems by different unstructured grids on both serial and parallel platforms. Detailed implementations and numerical results are presented.


2019 ◽  
Vol 9 (19) ◽  
pp. 3975 ◽  
Author(s):  
Christoph Schärer ◽  
Luca von Siebenthal ◽  
Ishbel Lomax ◽  
Micah Gross ◽  
Wolfgang Taube ◽  
...  

In artistic gymnastics, the possibility of using 2D video analysis to measure the peak height (hpeak) and length of flight (L) during routine training in order to monitor the execution and development of difficult elements is intriguing. However, the validity and reliability of such measurements remain unclear. Therefore, in this study, the hpeak and L of 38 vaults, performed by top-level gymnasts, were assessed by 2D and 3D analysis in order to evaluate criterion validity and both intrarater and interrater reliability of the 2D method. Validity calculations showed higher accuracy for hpeak (±95% LoA: ±3.6% of average peak height) than for L (±95% LoA: ±7.6% of average length). Minor random errors, but no systematic errors, were observed in the examination of intrarater reliability (hpeak: CV% = 0.44%, p = 0.81; L: CV% = 0.87%, p = 0.14) and interrater reliability (hpeak: CV% = 0.51%, p = 0.55; L: CV% = 0.72%, p = 0.44). In conclusion, the validity and reliability of the 2D method are deemed sufficient (particularly for hpeak, but with some limitations for L) to justify its use in routine training of the vault. Due to its simplicity and low cost, this method could be an attractive monitoring tool for gymnastics coaches.


2004 ◽  
Vol 31 (6) ◽  
pp. 965-976 ◽  
Author(s):  
Najib Bouaanani ◽  
Patrick Paultre ◽  
Jean Proulx

This paper presents a numerical and parametric study of the effect of an ice cover on the dynamic response of a concrete dam using the approach proposed in the companion paper in this issue. The method was programmed and implemented in a finite element code specialized for the seismic analysis of concrete dams. The 84-m-high Outardes 3 concrete gravity dam in northeastern Quebec was chosen as a model for this research. Some basic aspects of the numerical model are established in this paper and we show that the ice cover affects the dynamic response of the ice–dam–reservoir system. Main features of this influence are emphasized and discussed in a parametric study through the analysis of: (i) acceleration frequency response curves at the dam crest, (ii) hydrodynamic frequency response curves inside the reservoir, and (iii) the hydrodynamic pressure distribution on the upstream face of the dam. Key words: gravity dams, concrete dams, ice, reservoirs, mathematical models, ice–structure interaction, fluid–structure interaction, forced-vibration testing, finite elements modelling.


Author(s):  
Zhengshu Shen ◽  
Jami J. Shah ◽  
Joseph K. Davidson

Development of tolerance analysis methods that are consistent with the ASME and ISO GD&T (geometric dimensioning and tolerancing) standards is a challenging task. Such methods are the basis for creating computer-aided tools for 3D tolerance analysis and assemblability analysis. These tools, along with the others, make it possible to realize virtual manufacturing in order to shorten lead-time and reduce cost in the product development process. Current simulation tools for 3D tolerance analysis and assemblability analysis are far from satisfactory because the underlying variation algorithms are not fully consistent with the GD&T standards. Better algorithms are still to be developed. Towards that goal, this paper proposes an improved simulation-based approach to tolerance and assemblability analyses for assemblies with pin/hole floating mating conditions in mechanical products. A floating pin/hole mating condition is the one where the mating pin should be able to “float” within the mating hole, and thus press-fit is not necessary for the parts to assemble properly. When multiple pin/hole mating pairs are involved in a product, the feasibility of assembly needs to be analyzed. This paper will introduce a more complete method of analyzing assemblability for such assemblies. In most cases, a 3D (3-dimensional) problem can be simplified to 1D (1-dimensional) or 2D (2-dimensional) problem, with the loss of some accuracy. To make a comparison and find out how accurately 1D and 2D analyses can approximate 3D analysis, this paper will provide the variation algorithms for 1D, 2D and 3D simulations. The algorithms developed account not only for bonus/shift tolerances but also for feasibility of assembling. These algorithms are extendable to consider other different GD&T specifications. The assemblability criteria proposed is generally applicable to any assemblies with pin/hole floating mating conditions. Case studies are provided to demonstrate the algorithms developed. The comparison study shows quantitatively the difference in the results from 1D, 2D and 3D simulation based analyses.


Author(s):  
Risa SUZUKI ◽  
Ichiro KIMURA ◽  
Yasuyuki SHIMIZU
Keyword(s):  

2014 ◽  
Vol 04 (08) ◽  
pp. 399-404 ◽  
Author(s):  
Illya Chaikovsky ◽  
Leonid Stadnyuk ◽  
Georg Mjasnikov ◽  
Anatoly Kazmirchuk ◽  
Sergy Sofienko ◽  
...  

2016 ◽  
Author(s):  
Elizabeth H. Finn ◽  
Gianluca Pegoraro ◽  
Sigal Shachar ◽  
Tom Misteli

ABSTRACTThe spatial organization of eukaryotic genomes is non-random, cell-type specific, and has been linked to cellular function. The investigation of spatial organization has traditionally relied extensively on fluorescence microscopy. The validity of the imaging methods used to probe spatial genome organization often depends on the accuracy and precision of distance measurements. Imaging-based measurements may either use 2 dimensional datasets or 3D datasets including the z-axis information in image stacks. Here we compare the suitability of 2D versus 3D distance measurements in the analysis of various features of spatial genome organization. We find in general good agreement between 2D and 3D analysis with higher convergence of measurements as the interrogated distance increases, especially in flat cells. Overall, 3D distance measurements are more accurate than 2D distances, but are also more prone to noise. In particular, z-stacks are prone to error due to imaging properties such as limited resolution along the z-axis and optical aberrations, and we also find significant deviations from unimodal distance distributions caused by low sampling frequency in z. These deviations can be ameliorated by sampling at much higher frequency in the z-direction. We conclude that 2D distances are preferred for comparative analyses between cells, but 3D distances are preferred when comparing to theoretical models in large samples of cells. In general, 2D distance measurements remain preferable for many applications of analysis of spatial genome organization.


Sign in / Sign up

Export Citation Format

Share Document