earthquake frequency
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Amirreza Ghaemmaghami

In this study, the finite element method is used to investigate the seismic behaviour of concrete, open top rectangular liquid tanks in two and three-dimensional spaces. This method is capable of considering both impulsive and convective responses of liquid-tank system. The sloshing behaviour is simulated using linear free surface boundary conditions. Two different finite element models corresponding with shallow and tall tank configurations are studied under the effects of all components of earthquake record. The effect of earthquake frequency content on the seismic behaviour of fluid-rectangular tank system is investigated using four different seismic motions including Northridge, El-Centro, San-Fernando and San-Francisco earthquake records. These records are scaled in such a way that all horizontal peak ground accelerations are similar. Fluid-structure interaction effects on the dynamic response of fluid containers are taken into account incorporating wall flexibility. A simple model with viscous boundary is used to include deformable foundation effects as a linear medium. Six different soil types are considered. In addition the application of slat screens and baffles in reducing the sloshing height of liquid tank is investigated by carrying out a parametric study. The results show that the wall flexibility, fluid damping properties, earthquake frequency content and soil-structure interaction have a major effect on seismic behaviour of liquid tanks and should be considered in design criteria of tanks. The effect of vertical acceleration on the dynamic response of the liquid tanks is found to be less significant when horizontal and vertical ground motions are considered together. The results in this study are verified and compared with those obtained by numerical methods and other available methods in the literature.


2021 ◽  
Author(s):  
Amirreza Ghaemmaghami

In this study, the finite element method is used to investigate the seismic behaviour of concrete, open top rectangular liquid tanks in two and three-dimensional spaces. This method is capable of considering both impulsive and convective responses of liquid-tank system. The sloshing behaviour is simulated using linear free surface boundary conditions. Two different finite element models corresponding with shallow and tall tank configurations are studied under the effects of all components of earthquake record. The effect of earthquake frequency content on the seismic behaviour of fluid-rectangular tank system is investigated using four different seismic motions including Northridge, El-Centro, San-Fernando and San-Francisco earthquake records. These records are scaled in such a way that all horizontal peak ground accelerations are similar. Fluid-structure interaction effects on the dynamic response of fluid containers are taken into account incorporating wall flexibility. A simple model with viscous boundary is used to include deformable foundation effects as a linear medium. Six different soil types are considered. In addition the application of slat screens and baffles in reducing the sloshing height of liquid tank is investigated by carrying out a parametric study. The results show that the wall flexibility, fluid damping properties, earthquake frequency content and soil-structure interaction have a major effect on seismic behaviour of liquid tanks and should be considered in design criteria of tanks. The effect of vertical acceleration on the dynamic response of the liquid tanks is found to be less significant when horizontal and vertical ground motions are considered together. The results in this study are verified and compared with those obtained by numerical methods and other available methods in the literature.


2021 ◽  
Author(s):  
Mehdi Moslemi

In this study, the seismic performance of concrete ground-supported cylindrical as well as liquid-filled elevated water tanks supported on concrete shaft is evaluated using the finite element method. The effects of a wide spectrum of parameters such as liquid sloshing, tank wall flexibility, vertical ground acceleration, tank aspect ratio, base fixity, and earthquake frequency content on dynamic behaviour of such structures are examined. Furthermore, the adequacy of current practice in seismic analysis and design of liquid containing structures is investigated. A comprehensive parametric study covering a wide range of tank capacities and aspect ratios found in practice today is also carried out on elevated tanks. Two different innovative strategies to reduce the seismic response of elevated tanks are examined, in the first strategy the inclined cone angle of the lower portion of the vessel is increased while in the second strategy the supporting shaft structure is isolated either from the ground or the vessel mounted on top. The results of this study show that capability of the proposed finite element technique. Using this method, the major aspects in the fluid-structure interaction problems including wall flexibility, sloshing motion, damping properties of fluid domain, and the individual effects of impulsive and convective terms can be considered. The effects of tank wall flexibility, vertical ground acceleration, base fixity, and earthquake frequency content are found to be significant on the dynamic behaviour of liquid tanks. The parametric study indicates that the results can be utilized with high level of accuracy in seismic design applications for conical elevated tanks. This study further shows that increasing the cone angle of the vessel can result in a significant reduction in seismically induced forces of the tank, leading to an economical design of the shaft structure and the foundation system. It is also concluded that the application of passive control devices to conical elevated tanks offers a substantial benefit for the earthquake-resistant design of such structures.


2021 ◽  
Author(s):  
Maryam Rafieeraad

Seismic behavior of Liquid Containing Structures has been studied for decades. Being able to have these structures functioning during and after an earthquake is imperative for well-being of a society hence importance of their design. Response Modification Factor known as “R factor” is one of the key parameters in seismic design. However, in case of LCS’s, a justifiable guideline to determine the R factor is yet to be developed and current codes have utilized empirical values in design of these structures. The design intend for LCS’s is to meet the serviceability limits as opposed to life safety and collapse prevention which is the case of design of buildings. This study aims to investigate the effect of various parameters such as material nonlinearity, tank dimensions, base condition, concrete compressive strength, characteristics of seismic excitation records on the seismic behavior of concrete tanks. In this study, a finite element method is developed to investigate the seismic behavior of circular ground supported reinforced concrete tanks. First, the accuracy of current practice is investigated by employing the analytical and numerical methods, experimental studies. Finite element technique and pushover analysis are utilized to set up the pushover curve and achieve over-strength and ductility factors. The response modification factor (R) is then evaluated based on the nonlinear static analysis. Second, using the nonlinear dynamic analysis (time-history), the seismic behavioral aspects of full liquid tanks are studied taking into account the material nonlinearity, wall flexibility, effect of impulsive component, fluid-surface interaction and vertical ground acceleration. Thereafter, a parametric study is conducted to study the influence of tank dimensions, base fixity conditions and earthquake frequency content on the response modification factor. This study shows the over-strength and ductility factor of RC ground-supported tanks are significantly influence by tank size, height, height/diameter ratio and fundamental period. Also, fixed based tanks and shallow tanks have higher R values compared to hinged based and tall tanks respectively. The time history results show that the effect of material nonlinearity, vertical ground acceleration, base condition and earthquake frequency content on the dynamic behavior of liquid ground supported tanks is significant.


2021 ◽  
Author(s):  
Mehdi Moslemi

In this study, the seismic performance of concrete ground-supported cylindrical as well as liquid-filled elevated water tanks supported on concrete shaft is evaluated using the finite element method. The effects of a wide spectrum of parameters such as liquid sloshing, tank wall flexibility, vertical ground acceleration, tank aspect ratio, base fixity, and earthquake frequency content on dynamic behaviour of such structures are examined. Furthermore, the adequacy of current practice in seismic analysis and design of liquid containing structures is investigated. A comprehensive parametric study covering a wide range of tank capacities and aspect ratios found in practice today is also carried out on elevated tanks. Two different innovative strategies to reduce the seismic response of elevated tanks are examined, in the first strategy the inclined cone angle of the lower portion of the vessel is increased while in the second strategy the supporting shaft structure is isolated either from the ground or the vessel mounted on top. The results of this study show that capability of the proposed finite element technique. Using this method, the major aspects in the fluid-structure interaction problems including wall flexibility, sloshing motion, damping properties of fluid domain, and the individual effects of impulsive and convective terms can be considered. The effects of tank wall flexibility, vertical ground acceleration, base fixity, and earthquake frequency content are found to be significant on the dynamic behaviour of liquid tanks. The parametric study indicates that the results can be utilized with high level of accuracy in seismic design applications for conical elevated tanks. This study further shows that increasing the cone angle of the vessel can result in a significant reduction in seismically induced forces of the tank, leading to an economical design of the shaft structure and the foundation system. It is also concluded that the application of passive control devices to conical elevated tanks offers a substantial benefit for the earthquake-resistant design of such structures.


2021 ◽  
Author(s):  
Maryam Rafieeraad

Seismic behavior of Liquid Containing Structures has been studied for decades. Being able to have these structures functioning during and after an earthquake is imperative for well-being of a society hence importance of their design. Response Modification Factor known as “R factor” is one of the key parameters in seismic design. However, in case of LCS’s, a justifiable guideline to determine the R factor is yet to be developed and current codes have utilized empirical values in design of these structures. The design intend for LCS’s is to meet the serviceability limits as opposed to life safety and collapse prevention which is the case of design of buildings. This study aims to investigate the effect of various parameters such as material nonlinearity, tank dimensions, base condition, concrete compressive strength, characteristics of seismic excitation records on the seismic behavior of concrete tanks. In this study, a finite element method is developed to investigate the seismic behavior of circular ground supported reinforced concrete tanks. First, the accuracy of current practice is investigated by employing the analytical and numerical methods, experimental studies. Finite element technique and pushover analysis are utilized to set up the pushover curve and achieve over-strength and ductility factors. The response modification factor (R) is then evaluated based on the nonlinear static analysis. Second, using the nonlinear dynamic analysis (time-history), the seismic behavioral aspects of full liquid tanks are studied taking into account the material nonlinearity, wall flexibility, effect of impulsive component, fluid-surface interaction and vertical ground acceleration. Thereafter, a parametric study is conducted to study the influence of tank dimensions, base fixity conditions and earthquake frequency content on the response modification factor. This study shows the over-strength and ductility factor of RC ground-supported tanks are significantly influence by tank size, height, height/diameter ratio and fundamental period. Also, fixed based tanks and shallow tanks have higher R values compared to hinged based and tall tanks respectively. The time history results show that the effect of material nonlinearity, vertical ground acceleration, base condition and earthquake frequency content on the dynamic behavior of liquid ground supported tanks is significant.


2021 ◽  
pp. 107754632110005
Author(s):  
Payam Sotoudeh ◽  
Mohsen Ghaemian

One of the acceptable assumptions in engineering practice is vertical propagation of earthquake waves. When the source of earthquake is located very deep in the ground, this assumption is valid, but for sources located in shallow ground, it loses its viability. In this study, linear seismic analysis of a system of concrete dam-massed foundation-reservoir is performed under inclined earthquake excitation. Both P- and SV-type earthquakes are considered for the purpose of the seismic analysis. To consider the effects of inhomogeneous waves for the case of SV wave propagation, post-critical angles are also considered in the analysis. To investigate the effects of earthquake frequency content on the results, three different records with contents of low, intermediate, and high frequencies are selected. Results indicate that considering vertical propagation underestimates the obtained responses. For the case of SV-type earthquakes, post-critical angles must be looked at. Frequency content of the earthquake also has considerable effects on trend and absolute values of responses.


2021 ◽  
Author(s):  
Jiannan Meng ◽  
Ozan Sinoplu ◽  
Zhipeng Zhou ◽  
Bulent Tokay ◽  
Timothy Kusky ◽  
...  

<p><strong>A devastating M 7.0 earthquake on October 30, 2020, offshore Samos Island, Greece, was a consequence of the Aegean and Anatolian upper crust being pulled apart by north-south extensional stresses resulting from slab rollback, where the African plate is subducting northwards beneath Eurasia, while the slab is sinking by gravitational forces, causing it to retreat southwards. Since the retreating African slab is coupled with the overriding plate, it tears the upper plate apart as it retreats, breaking it into numerous small plates with frequent earthquakes along their boundaries.  The earthquake happened offshore of the extensional B</strong><strong>ü</strong><strong>y</strong><strong>ü</strong><strong>k Menderes Graben, where a 150 km long, 10 km wide, incipient upper plate rift system formed in the Anatolian plate, showing that the entire Aegean-Western Anatolian region is being pulled apart by extensional stresses related to the slab rollback. Earthquake solutions and fault plane studies around western Anatolia support this spectacular extension, and show that the modern extension was preceded on many faults by oblique extension and strike-slip motions, perhaps reflecting a change in tectonic setting from sideways escape from the Africa-Arabia collision with Eurasia,  to the pure extension related to slab rollback of the African plate, and the retreat of the Hellenic trench. Historical earthquake swarms and deformation of the upper plate in the Aegean have been associated with massive volcanism and cataclysmic devastation, such as the M 7.7 Amorgos earthquake in July 1956 between the islands of Naxos and Santorini (Thera). Even more notable was the eruption of Santorini 3650 years ago, which contributed to the fall of the Minoan civilization. The Samos earthquake highlights the long historical lack of appreciation of links between deep tectonic processes and upper crustal deformation and geological hazards, and is a harbinger of future earthquakes and volcanic eruptions, establishing a basis for studies to institute better protection of infrastructure and upper plate cultures in the region.</strong><strong> Further detailed studies are needed in this area to better understand and predict earthquake frequency, possible locations, and to establish better building codes to protect people's lives and property.</strong></p><p><strong><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.9a0ea6af400066213360161/sdaolpUECMynit/12UGE&app=m&a=0&c=672cb3d1887c66c27ef7b2ac01552f9d&ct=x&pn=gepj.elif&d=1" alt=""></strong></p>


2021 ◽  
Author(s):  
Gerald Duma

<p>Based on the comprehensive earthquake catalogue USGS ( HYPERLINK<span>  </span>https://earthquake.usgs.gov) the paper demonstrates that strong earthquake activity, seismic events with M≥6, exhibits a seasonal trend. This feature is the result of<span>  </span>analyses of earthquake data for the N- and S- Earth Hemisphere in period 2010-2019. It can be shown also for single earthquake prone regions as well, like Japan, Eurasia, S-America.</p><p>Any seasonal effect suggests an external influence. In that regard, one can think also of a solar-terrestrial effect, that is suggested already in several studies (e.g<span>  </span>M.Tavares, A.Azevedo, 2011; D.A.E. Vares, M.A.Persinger,2014; G.Duma, 2019). This assumption leads to the question: Which dynamic process can cause a trigger effect for strong earthquakes in the Earth's lithosphere.</p><p>In this study the intensity of solar flares and the resulting radiation, the solar wind, towards the Earth was taken into account. An appropriate parameter which has been regularity measured and reported for many decades and which reflects the intensity of solar radiation is the magnetic index Kp. It is measured at numerous geomagnetic observatories and describes the magnetic disturbances in nT within 3 hour intervals, respectively. Averages of all the measured 3-hour values are then published as Kp, therefore considered a planetary parameter (International Service of Geomagnetic Indices ISGI,France).</p><p>The temporal variations of strong earthquake activity over 10 years and their energy release was compared with the above mentioned index Kp. Actually, a distinct correlation between the two quantities, Kp and earthquake frequency, resulted in cases of different regions as well as globally. Another essential result of the study is that maxima of Kp preceed those of earthquake activity by about 60 to 80 days in most cases. The mechanism has not yet been modeled satisfactorily.</p>


2021 ◽  
Author(s):  
Philippe Steer ◽  
Louise Jeandet-Ribes ◽  
Rodolphe Cattin ◽  
Martine Simoes ◽  
Nadaya Cubas ◽  
...  

<p>Tectonics, climate and surface processes dictate the evolution of Earth’s surface topography. Topographic change in turn influences lithospheric deformation, but the temporal and spatial scales at which this feedback can be effective remains an open issue. Here, we make a synthesis of recent developments investigating how erosion impacts the stress-loading of faults and potentially induces some earthquakes. We first show, using an elastic model for the lithosphere, that erosion rates of ca 0.1–20 mm.yr<sup>−1</sup>, as documented in active compressional orogens, can raise the Coulomb stress by ca 0.1–10 bar on the nearby thrust faults over an earthquake cycle, by changing both the normal and tangential stress. This model also suggests that short-lived but intense erosional events can represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Indeed, we demonstrate that typhoon Morakot in 2009, which triggered numerous landslides, was followed by a step increase in the shallow (< 15 km depth) earthquake frequency and in the b-value, lasting at least 2.5 years. These observations suggest that the progressive removal of landslide debris by rivers from southern Taiwan has increased the crustal stress rate and earthquake activity. Last, we use QDYN, a quasi‐dynamic numerical model of earthquake cycles to investigate the effect of a large erosional event, such as typhoon Morakot, on seismicity. We show that erosional events with a duration shorter than the duration of an earthquake cycle can significantly increase the seismicity rate, even for small stress changes. Consistent with the increase in the b-value observed after typhoon Morakot, our results also show that large erosional events with a period similar to the earthquake nucleation timescale can change earthquake size distribution by triggering more small events. Overall, these modelling results and observations highlight that short-lived but intense erosional events can lead to perceptible changes in shallow seismicity, affecting both earthquake frequency and size-distributions.</p>


Sign in / Sign up

Export Citation Format

Share Document