scholarly journals Bacterial Foraging Optimization Based on Levy Flight for Fuzzy Portfolio Optimization

Author(s):  
Xinzheng Wu ◽  
Tianwei Zhou ◽  
Zishan Qiu
2013 ◽  
Vol 12 (23) ◽  
pp. 7918-7921 ◽  
Author(s):  
Lijing Tan ◽  
Ben Niu ◽  
Fuyong Lin ◽  
Qiqi Duan ◽  
Li Li

2020 ◽  
Vol 12 (03n04) ◽  
pp. 2050005
Author(s):  
Yifan He ◽  
Claus Aranha

Portfolio optimization is a financial task which requires the allocation of capital on a set of financial assets to achieve a better trade-off between return and risk. To solve this problem, recent studies applied multi-objective evolutionary algorithms (MOEAs) for its natural bi-objective structure. This paper presents a method injecting a distribution-based mutation method named Lévy Flight into a decomposition based MOEA named MOEA/D. The proposed algorithm is compared with three MOEA/D-like algorithms, NSGA-II, and other distribution-based mutation methods on five portfolio optimization benchmarks sized from 31 to 225 in OR library without constraints, assessing with six metrics. Numerical results and statistical test indicate that this method can outperform comparison methods in most cases. We analyze how Lévy Flight contributes to this improvement by promoting global search early in the optimization. We explain this improvement by considering the interaction between mutation method and the property of the problem. We additionally show that our method perform well with a round-lot constraint on Nikkei.


2019 ◽  
Vol 12 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Venubabu Rachapudi ◽  
Golagani Lavanya Devi

Background: An efficient feature selection method for Histopathological image classification plays an important role to eliminate irrelevant and redundant features. Therefore, this paper proposes a new levy flight salp swarm optimizer based feature selection method. Methods: The proposed levy flight salp swarm optimizer based feature selection method uses the levy flight steps for each follower salp to deviate them from local optima. The best solution returns the relevant and non-redundant features, which are fed to different classifiers for efficient and robust image classification. Results: The efficiency of the proposed levy flight salp swarm optimizer has been verified on 20 benchmark functions. The anticipated scheme beats the other considered meta-heuristic approaches. Furthermore, the anticipated feature selection method has shown better reduction in SURF features than other considered methods and performed well for histopathological image classification. Conclusion: This paper proposes an efficient levy flight salp Swarm Optimizer by modifying the step size of follower salp. The proposed modification reduces the chances of sticking into local optima. Furthermore, levy flight salp Swarm Optimizer has been utilized in the selection of optimum features from SURF features for the histopathological image classification. The simulation results validate that proposed method provides optimal values and high classification performance in comparison to other methods.


2021 ◽  
pp. 1-12
Author(s):  
Heming Jia ◽  
Chunbo Lang

Salp swarm algorithm (SSA) is a meta-heuristic algorithm proposed in recent years, which shows certain advantages in solving some optimization tasks. However, with the increasing difficulty of solving the problem (e.g. multi-modal, high-dimensional), the convergence accuracy and stability of SSA algorithm decrease. In order to overcome the drawbacks, salp swarm algorithm with crossover scheme and Lévy flight (SSACL) is proposed. The crossover scheme and Lévy flight strategy are used to improve the movement patterns of salp leader and followers, respectively. Experiments have been conducted on various test functions, including unimodal, multimodal, and composite functions. The experimental results indicate that the proposed SSACL algorithm outperforms other advanced algorithms in terms of precision, stability, and efficiency. Furthermore, the Wilcoxon’s rank sum test illustrates the advantages of proposed method in a statistical and meaningful way.


Sign in / Sign up

Export Citation Format

Share Document