Multi-material 3D Printing of Thermoplastic Elastomers for Development of Soft Robotic Structures with Integrated Sensor Elements

Author(s):  
Antonia Georgopoulou ◽  
Bram Vanderborght ◽  
Frank Clemens
2021 ◽  
Vol 47 ◽  
pp. 102268
Author(s):  
Yuchao Wu ◽  
Mingen Fei ◽  
Tingting Chen ◽  
Chao Li ◽  
Tengfei Fu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3551
Author(s):  
Marina León-Calero ◽  
Sara Catherine Reyburn Valés ◽  
Ángel Marcos-Fernández ◽  
Juan Rodríguez-Hernandez

Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, 1H-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.


2018 ◽  
Vol 52 (1) ◽  
pp. 320-331 ◽  
Author(s):  
Vitalij Schimpf ◽  
Johannes B. Max ◽  
Benjamin Stolz ◽  
Barbara Heck ◽  
Rolf Mülhaupt

2021 ◽  
Author(s):  
Vega Pradana Rachim ◽  
Sung-Min Park

Abstract Thin-film microfabrication-based bio-integrated sensors are widely used for a broad range of applications that require continuous measurements of biophysical and biochemical signals from the human body. Typically, they are fabricated using standard photolithography and etching techniques. This traditional method is capable of producing a precise, thin, and flexible bio-integrated sensor system. However, it has several drawbacks, such as the fact that it can only be used to fabricate sensors on a planar surface, it is highly complex requiring specialized high-end facilities and equipment, and it mostly allows only 2D features to be fabricated. Therefore, developing bio-integrated sensors via 3D-printing technology has attracted particular interest. 3D-printing technology offers the possibility to develop sensors on nonplanar substrates, which is beneficial for noninvasive bio-signal sensing, and to directly print on complex 3D nonplanar organ structures. Moreover, this technology introduces a highly flexible and precisely controlled printing process to realize patient-specific sensor systems for ultimate personalized medicine, with the potential of rapid prototyping and mass customization. This review summarizes the latest advancements in 3D-printed bio-integrated systems, including 3D-printing methods and employed printing materials. Furthermore, two widely used 3D-printing techniques are discussed, namely, ex-situ and in-situ fabrication techniques, which can be utilized in different types of applications, including wearable and smart-implantable biosensor systems.


Nature ◽  
2013 ◽  
Vol 494 (7436) ◽  
pp. 174-174 ◽  
Author(s):  
Michael Pawlyn
Keyword(s):  

Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 594-595
Author(s):  
Cameron Darkes-Burkey ◽  
Robert F. Shepherd
Keyword(s):  

2009 ◽  
Vol 56 (S 01) ◽  
Author(s):  
D Schmauss ◽  
R Sodian ◽  
C Schmitz ◽  
A Bigdeli ◽  
M Schmoeckel ◽  
...  

Author(s):  
Thomas Birtchnell ◽  
William Hoyle
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document