Load Sharing and Quasi-Static Transmission Error of Non-Standard Tooth Height Spur Gears

Author(s):  
José I. Pedrero ◽  
Miryam B. Sánchez ◽  
Miguel Pleguezuelos
2019 ◽  
Vol 287 ◽  
pp. 01004
Author(s):  
José I. Pedrero ◽  
Miguel Pleguezuelos ◽  
Miryam B. Sánchez

Profile modifications are commonly used to avoid shocks between meshing gear teeth produced by the delay of the driven gear, and the subsequent sooner start of contact, due to the teeth deflections. A suitable tip relief at the driven tooth shifts the start of contact to the proper location at the theoretical inner point of contact. The shape of the relief governs the loading curve of the tooth pair, while the length of relief determines the intervals in which this actual loading curve differs from the theoretical one of unmodified teeth. As at least one tooth pair should be in contact at the unmodified involute profile interval, the length of modification should be smaller than the length of the intervals of two pair tooth contact; otherwise, a shock at the end of contact of the previous pair is unavoidable. However this problem does not occur for high contact ratio spur gears, in which at least two couples of teeth are in contact at any moment. In this work, a study on the load sharing and the quasi-static transmission error for high contact ratio spur gears with long profile modification has been performed, and a model for the tooth contact has been developed.


2021 ◽  
Vol 263 (5) ◽  
pp. 1275-1285
Author(s):  
Joshua Götz ◽  
Sebastian Sepp ◽  
Michael Otto ◽  
Karsten Stahl

One important source of noise in drive trains are transmissions. In numerous applications, it is necessary to use helical instead of spur gear stages due to increased noise requirements. Besides a superior excitation behaviour, helical gears also show additional disadvantageous effects (e.g. axial forces and tilting moments), which have to be taken into account in the design process. Thus, a low noise spur gear stage could simplify design and meet the requirements of modern mechanical drive trains. The authors explore the possibility of combining the low noise properties of helical gears with the advantageous mechanical properties of spur gears by using spur gears with variable tip diameter along the tooth width. This allows the adjustment of the total length of active lines of action at the beginning and end of contact and acts as a mesh stiffness modification. For this reason, several spur gear designs are experimentally investigated and compared with regard to their excitation behaviour. The experiments are performed on a back-to-back test rig and include quasi-static transmission error measurements under load as well as dynamic torsional vibration measurements. The results show a significant improvement of the excitation behaviour for spur gears with variable tip diameter.


Author(s):  
Isaias Regalado ◽  
Donald R. Houser

Abstract The theoretical advantage of conjugate action in involute gears is lost due to the deflection of the teeth under load and due to manufacturing and assembling errors. These factors produce instantaneous variations in the gear ratio commonly referred to as transmission error. The transmission error has been proven to have a strong relationship with the noise emitted by the transmission. In order to reduce the transmission error, the contacting surfaces of the gears are modified to compensate for the deflections and errors. These modifications may be performed in the direction of the profile, the lead or in a more general sense it may be topographical (defined point by point). This paper describes a non-iterative procedure for the calculation of the modifications for minimum transmission error based on a predefined load distribution. The results presented agree with the common practice for spur gears of tip relief in the direction of the profile and crowning in the direction of the lead, but for helical gears the need for a more complicated modification is observed.


2019 ◽  
Vol 69 (3) ◽  
pp. 303-310
Author(s):  
Benny Thomas ◽  
K. Sankaranarayansamy ◽  
S. Ramachandra ◽  
Suresh Kumar S.P.

Asymmetric spur gears are finding application in many fields including aerospace propulsion and automobile which demand unidirectional or relatively higher load on one side of the gear flank. Design intend to maximise the load carrying capacity of the drive side of asymmetric gear by increasing the pressure angle is achieved at the expense of coast side capacity. Multiple solution for coast to drive side pressure angle exist for a given contact ratio and each of these have relative merits and demerits. In the present work asymmetric spur gears of theoretically equal contact ratio as that of corresponding symmetric gears are selected to investigate the change in gear tooth static transmission error and dynamic behaviour with coast and drive side pressure angle. Study shows that dynamic factor of normal contact ratio asymmetric spur gears below resonance speed are relatively lower than corresponding symmetric gears of same module, contact ratio, number of teeth, coast side pressure angle and fillet radii. Results also show that, coast and drive side pressure angle can be suitably selected for a given contact ratio to reduce the single tooth and double tooth contact static transmission error and dynamic factor of asymmetric spur gears.


1986 ◽  
Vol 108 (1) ◽  
pp. 86-94 ◽  
Author(s):  
M. S. Tavakoli ◽  
D. R. Houser

A procedure for computing static transmission errors and tooth load sharing was developed for low and high contact ratio internal and external spur gears. A suitable optimization algorithm was used to minimize any combination of the harmonics of gear mesh frequency components of the static transmission error. Different combinations of tip and root relief may be used to achieve optimization. These include varying the starting point of relief and varying the magnitude of relief, and selecting the gear and/or the pinion teeth to be tip and/or root-relieved. Also, there exists an option for using either linear or parabolic relief. In addition to the presentation of optimal profile modifications, the effects of off-design loads, nonoptimum modifications, and random spacing errors are presented.


1996 ◽  
Vol 118 (1) ◽  
pp. 1-6 ◽  
Author(s):  
K. Y. Yoon ◽  
S. S. Rao

A novel method was presented by the authors to minimize the static transmission error using cubic splines (C.S.) for gear tooth profile. A reduction in the transmission error is expected to reduce the gear vibration and noise by lowering the dynamic tooth load in a meshing cycle. To establish this fact, a dynamic analysis of the gear drive with involute tooth and modified tooth profiles (using C.S.) is performed. For this, first the tooth deformation is found and then the tooth dynamic load is determined for all reasonable speeds. A parametric study is conducted to establish the superiority of the C.S. based gear profile over the involute profile as well as the other profiles based on the use of linear and parabolic tip reliefs.


Sign in / Sign up

Export Citation Format

Share Document