scholarly journals ANALYTICAL MODEL FOR MESHING STIFFNESS, LOAD SHARING, AND TRANSMISSION ERROR FOR SPUR GEARS WITH PROFILE MODIFICATION UNDER NON-NOMINAL LOAD CONDITIONS

Author(s):  
Miguel Pleguezuelos ◽  
Miryam B. Sánchez ◽  
José I. Pedrero
2019 ◽  
Vol 287 ◽  
pp. 01004
Author(s):  
José I. Pedrero ◽  
Miguel Pleguezuelos ◽  
Miryam B. Sánchez

Profile modifications are commonly used to avoid shocks between meshing gear teeth produced by the delay of the driven gear, and the subsequent sooner start of contact, due to the teeth deflections. A suitable tip relief at the driven tooth shifts the start of contact to the proper location at the theoretical inner point of contact. The shape of the relief governs the loading curve of the tooth pair, while the length of relief determines the intervals in which this actual loading curve differs from the theoretical one of unmodified teeth. As at least one tooth pair should be in contact at the unmodified involute profile interval, the length of modification should be smaller than the length of the intervals of two pair tooth contact; otherwise, a shock at the end of contact of the previous pair is unavoidable. However this problem does not occur for high contact ratio spur gears, in which at least two couples of teeth are in contact at any moment. In this work, a study on the load sharing and the quasi-static transmission error for high contact ratio spur gears with long profile modification has been performed, and a model for the tooth contact has been developed.


2012 ◽  
Vol 499 ◽  
pp. 138-142
Author(s):  
Zhe Yuan ◽  
Yu Guo

The tooth profile modification can generally choose straight line modification, parabolic modification and arc modification. In order to accurately determine the tooth profile modification curves, basing on analysis of the vibration that effected by transmission error, a pair of gears meshing process is simulated with FEM approach. Aiming at reducing the fluctuation of transmission error, the transmission error curves of straight line modification, parabolic modification and arc modification with the same modification parameters are plotted, and the best modifications curve is obtained. The research shows that the approach is accurate to choose the best modification curve, and reduce the fluctuation of transmission error greatly. The approach illustrated in this paper provides a new way for designing the noiseless gears.


Author(s):  
Masoud Kimiaei ◽  
Saleh Akbarzadeh

Spur gears are one of the most important tools for power transmission in the industry and thus can be considered a key mechanical element. As a result of power transmission, gears might fail or experience wear and fatigue. So the improvement in the design and modification of tooth profile of gears can significantly reduce friction loss and wear of the gear teeth and therefore it increases the useful life, improves the quality, and reduces the cost. The purpose of this study is to show the influence of addendum modification on the tribological performance of spur gears which are operating in the mixed elastohydrodynamic lubrication. In this paper, a model based on the load-sharing concept is employed to study the effect of changing addendum modification on the performance of spur gears, the amount of wear rate, and the lubricant film thickness. To this end, a model based on the load-sharing concept is employed which takes the geometry and lubricant properties as input and predicts the friction coefficient, load carried by fluid film and asperities, efficiency, and wear rate as output.


1985 ◽  
Vol 107 (1) ◽  
pp. 11-16 ◽  
Author(s):  
A. H. Elkholy

A closed-form solution is presented for calculating the load sharing among meshing teeth in high contact ratio gearing (HCRG). The procedure is based upon the assumption that the sum of the tooth deflection, profile modification and spacing error at each of two or three pairs of contacts are all equal. It is also assumed that the sum of the normal loads contributed by each of two or three pairs of contacts is equal to the maximum normal load. Once the individual loads are determined, the tooth fillet stress, contact stress may be determined from the applied load and tooth geometry. An experimental example appears to verify the method.


Author(s):  
Mehdi Mohammadpour ◽  
Iraj Mirzaee ◽  
Shahram Khalilarya

This paper firstly presents a mathematical model in order to calculate the load distribution, single contact stiffness and meshing stiffness as well as transmission error. in this way, there is no need to use finite element like methods and also the calculation time is dramatically reduced. Presented method is based on definition of a statically undetermined problem that is formulated using energy method. Some assumptions considered to convert this problem to a statically determined problem and get the mathematical models. Then a numerical method is employed in order to solve the mathematical model using a double iteration flowchart to close the problem. This model is flexible to adapt for any modification in spur gear profile geometry. Finally, this model is verified using previous works that have been utilized finite element and experimental model.


2020 ◽  
Vol 317 ◽  
pp. 01002
Author(s):  
Miguel Pleguezuelos ◽  
Miryam B. Sánchez ◽  
José I. Pedrero

A comparison among different approaches of the meshing stiffness of spur gears has been carried out. The influence of each one on the load sharing, and subsequently on the determinant tooth-root and contact stresses, has also been studied. Equations for the evolution of the meshing stiffness along the path of contact according to all these formulations are also provided.


Sign in / Sign up

Export Citation Format

Share Document