Interface Sliding, Loading, and Wear

Author(s):  
Hani Ali Arafa
Keyword(s):  
Author(s):  
F. Monchoux ◽  
A. Rocher ◽  
J.L. Martin

Interphase sliding is an important phenomenon of high temperature plasticity. In order to study the microstructural changes associated with it, as well as its influence on the strain rate dependence on stress and temperature, plane boundaries were obtained by welding together two polycrystals of Cu-Zn alloys having the face centered cubic and body centered cubic structures respectively following the procedure described in (1). These specimens were then deformed in shear along the interface on a creep machine (2) at the same temperature as that of the diffusion treatment so as to avoid any precipitation. The present paper reports observations by conventional and high voltage electron microscopy of the microstructure of both phases, in the vicinity of the phase boundary, after different creep tests corresponding to various deformation conditions.Foils were cut by spark machining out of the bulk samples, 0.2 mm thick. They were then electropolished down to 0.1 mm, after which a hole with thin edges was made in an area including the boundary


1992 ◽  
Vol 7 (11) ◽  
pp. 3132-3138 ◽  
Author(s):  
H.E. Dève ◽  
S. Schmauder

The incorporation of ductile fibers in brittle matrices can lead to a significant increase in fracture resistance. The increase in toughness that derives from crack bridging is governed by the properties of the matrix/fiber interface and the ductility of the fibers. The current study addresses the role of interface sliding stress on the toughness of brittle composites reinforced with ductile fibers. The debond length is explicitly related to the interface sliding stress and the properties of the fiber. It is then incorporated into a geometrical model to simulate the bridging tractions versus crack opening under condition of continuous debonding. The implications on the effect of interfaces on the resistance curve are discussed.


1980 ◽  
Vol 28 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Takayuki Takasugi ◽  
Osamu Izumi
Keyword(s):  

2014 ◽  
Vol 11 (97) ◽  
pp. 20140453 ◽  
Author(s):  
Rachel R. Collino ◽  
Noah R. Philips ◽  
Michael N. Rossol ◽  
Robert M. McMeeking ◽  
Matthew R. Begley

The remarkable ability of some plants and animals to cling strongly to substrates despite relatively weak interfacial bonds has important implications for the development of synthetic adhesives. Here, we examine the origins of large detachment forces using a thin elastomer tape adhered to a glass slide via van der Waals interactions, which serves as a model system for geckos, mussels and ivy. The forces required for peeling of the tape are shown to be a strong function of the angle of peeling, which is a consequence of frictional sliding at the edge of attachment that serves to dissipate energy that would otherwise drive detachment. Experiments and theory demonstrate that proper accounting for frictional sliding leads to an inferred work of adhesion of only approximately 0.5 J m −2 (defined for purely normal separations) for all load orientations. This starkly contrasts with the interface energies inferred using conventional interface fracture models that assume pure sticking behaviour, which are considerably larger and shown to depend not only on the mode-mixity, but also on the magnitude of the mode-I stress intensity factor. The implications for developing frameworks to predict detachment forces in the presence of interface sliding are briefly discussed.


2003 ◽  
Vol 778 ◽  
Author(s):  
Adamos S. Dalis ◽  
Sheldon K. Friedlander

AbstractNanoparticle chain aggregates (NCA) serve as reinforcing fillers that are combined with molecular polymers to produce nano-composite materials, e.g. carbon black in rubber. The reinforcing mechanism due to the incorporation of nanoparticle aggregates is not well understood. Molecular dynamics (MD) computer simulations are employed to investigate the behavior of nanoparticle chain aggregates under strain. The interaction potential used is that of Cu obtained with the embedded atom method (EAM). Three single-crystal Cu nanoparticles are placed in contact in two different configurations (linear and kinked) and the structures are initially relaxed with MD steps for 300 ps. We observe plastic deformation during the sintering process for very small particles (∼2.5 nm in diameter) at temperatures as low as 300 K. The relaxed configurations are then strained to the breaking point at strain rates in the order of 1 m/s. We identify mechanisms of strain accommodation that lead to nanoparticle plastic deformation and eventually fracture. The linear and the kinked configurations break at strains of 0.263 and 0.344 respectively, while the maximum stress is close to 4 GPa (strain rate: 0.625 m/s). Both structures fail at the low-angle grain boundaries developed during the sintering process, while the higher strain for fracture for the kinked configuration is associated with interface sliding not observed in the linear case.


2006 ◽  
Vol 21 (10) ◽  
pp. 2453-2459 ◽  
Author(s):  
L.M. Hsiung ◽  
J. Zhou ◽  
T.G. Nieh

The instability of interfaces in an ultrafine TiAl-(γ)/Ti3Al-(α2) lamellar structure by straining at room temperature has been investigated using in situ straining techniques performed in a transmission electron microscope. The purpose of this study was to obtain experimental evidence to support the creep mechanisms based upon the interface sliding in association with a cooperative movement of interfacial dislocations, which was proposed previously to rationalize a nearly linear creep behavior of ultrafine lamellar TiAl alloys. The results reveal that the sliding and migration of lamellar interfaces can take place simultaneously as a result of the cooperative movement of interfacial dislocations, which can lead to an adverse effect in the performance of ultrafine lamellar TiAl alloy.


1980 ◽  
Vol 11 (7) ◽  
pp. 1234-1238 ◽  
Author(s):  
W. A. Baeslack ◽  
D Y. Mahajan

Sign in / Sign up

Export Citation Format

Share Document