Explainable Classification of EEG Data for an Active Touch Task Using Shapley Values

Author(s):  
Haneen Alsuradi ◽  
Wanjoo Park ◽  
Mohamad Eid
Keyword(s):  
Eeg Data ◽  
Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


Author(s):  
Sravanth Kumar Ramakuri ◽  
Chinmay Chakraboirty ◽  
Anudeep Peddi ◽  
Bharat Gupta

In recent years, a vast research is concentrated towards the development of electroencephalography (EEG)-based human-computer interface in order to enhance the quality of life for medical as well as nonmedical applications. The EEG is an important measurement of brain activity and has great potential in helping in the diagnosis and treatment of mental and brain neuro-degenerative diseases and abnormalities. In this chapter, the authors discuss the classification of EEG signals as a key issue in biomedical research for identification and evaluation of the brain activity. Identification of various types of EEG signals is a complicated problem, requiring the analysis of large sets of EEG data. Representative features from a large dataset play an important role in classifying EEG signals in the field of biomedical signal processing. So, to reduce the above problem, this research uses three methods to classify through feature extraction and classification schemes.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Bingtao Zhang ◽  
Tao Lei ◽  
Hong Liu ◽  
Hanshu Cai

Sleep staging is considered as an effective indicator for auxiliary diagnosis of sleep diseases and related psychiatric diseases, so it attracts a lot of attention from sleep researchers. Nevertheless, sleep staging based on visual inspection of tradition is subjective, time-consuming, and error-prone due to the large bulk of data which have to be processed. Therefore, automatic sleep staging is essential in order to solve these problems. In this article, an electroencephalogram- (EEG-) based scheme that is able to automatically classify sleep stages is proposed. Firstly, EEG data are preprocessed to remove artifacts, extract features, and normalization. Secondly, the normalized features and other context information are stored using an ontology-based model (OBM). Thirdly, an improved method of self-adaptive correlation analysis is designed to select the most effective EEG features. Based on these EEG features and weighting features analysis, the improved random forest (RF) is considered as the classifier to achieve the classification of sleep stages. To investigate the classification ability of the proposed method, several sets of experiments are designed and conducted to classify the sleep stages into two, three, four, and five states. The accuracy of five-state classification is 89.37%, which is improved compared to the accuracy using unimproved RF (84.37%) or previously reported classifiers. In addition, a set of controlled experiments is executed to verify the effect of the number of sleep segments (epochs) on the classification, and the results demonstrate that the proposed scheme is less affected by the sleep segments.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Milos Antonijevic ◽  
Miodrag Zivkovic ◽  
Sladjana Arsic ◽  
Aleksandar Jevremovic

Visual short-term memory (VSTM) is defined as the ability to remember a small amount of visual information, such as colors and shapes, during a short period of time. VSTM is a part of short-term memory, which can hold information up to 30 seconds. In this paper, we present the results of research where we classified the data gathered by using an electroencephalogram (EEG) during a VSTM experiment. The experiment was performed with 12 participants that were required to remember as many details as possible from the two images, displayed for 1 minute. The first assessment was done in an isolated environment, while the second assessment was done in front of the other participants, in order to increase the stress of the examinee. The classification of the EEG data was done by using four algorithms: Naive Bayes, support vector, KNN, and random forest. The results obtained show that AI-based classification could be successfully used in the proposed way, since we were able to correctly classify the order of the images presented 90.12% of the time and type of the displayed image 90.51% of the time.


2018 ◽  
Vol 132 ◽  
pp. 1523-1532 ◽  
Author(s):  
Damodar Reddy Edla ◽  
Kunal Mangalorekar ◽  
Gauri Dhavalikar ◽  
Shubham Dodia

2019 ◽  
Vol 16 (04) ◽  
pp. 1950016 ◽  
Author(s):  
Duanpo Wu ◽  
Zimeng Wang ◽  
Hong Huang ◽  
Guangsheng Wang ◽  
Junbiao Liu ◽  
...  

Epilepsy is caused by sudden abnormal discharges of neurons in the brain. This paper constructs an automatic seizure detection system, which combines the predicting result of multi-domain feature with the predicting result of spike rate feature to detect the occurrence of epileptic seizures. After segmenting EEG data into 5[Formula: see text]s with 80% overlap epochs, the paper extracts time domain features, frequency domain features and hurst exponents (HE) from each epoch and these features are reduced by linear discriminant analysis (LDA) to be input parameters of the random forest (RF) classifier, which provides classification of the EEG epochs concerning the existence of seizures. In parallel, the paper extracts spikes from EEG data with morphological filter and calculates the spike rate to determine whether there is seizure. Then the results obtained by these two methods are merged as the final detection result. The paper shows that the accuracy (AC), sensitivity (SE), specificity (SP) and the false positive ratio based on event (FPRE) obtained by hybrid method are 98.94%, 76.60%, 98.99% and 2.43 times/h, respectively. Finally, the paper applies the seizure detection method to do seizure warning and recording to help the family member to take care of the patients and the doctor to adjust the antiepileptic drugs (AEDs).


Sign in / Sign up

Export Citation Format

Share Document