Current Scenario and Integrated Approaches for Management of Finger Millet Blast (Magnaporthe grisea)

Author(s):  
K. B. Palanna ◽  
H. Rajashekara ◽  
Gutha Venkata Ramesh ◽  
B. Malikarjuna ◽  
Boda Praveen ◽  
...  
2012 ◽  
Vol 135 (2) ◽  
pp. 299-311 ◽  
Author(s):  
T. Kiran Babu ◽  
R. P. Thakur ◽  
H. D. Upadhyaya ◽  
P. N. Reddy ◽  
R. Sharma ◽  
...  

Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 700-704 ◽  
Author(s):  
B. V. Dayakar ◽  
N. N. Narayanan ◽  
S. S. Gnanamanickam

Two hundred twenty-seven isolates of Magnaporthe grisea isolated from blast-infected rice tissues from different states of India were tested with MAT1-1 and MAT1-2 fertile standard testers to determine their mating type. Of the 227 monoconidial isolates, 90 (39.6%) were fertile and 137 (60.4%) were infertile and did not produce perithecia when mated with any of the four testers. In the states of Meghalaya and Himachal Pradesh, both mating types were found. In the states of Andaman Islands, Andhra Pradesh, Karnataka, Haryana, and Punjab, only mating type MAT1-1 was identified. In states where MAT1-2 occurred, its frequency was low. Among the 90 fertile isolates, 40 (44.4%) produced perithecia, asci, and ascospores, and 11 of those isolates produced perithecia, asci, and ascospores with both MAT1-2 testers, KA-9 of finger millet, and GUY11 of rice origin. However, when monoconidial isolates were mated among themselves, isolates from the same field produced only barren perithecia. Pathogenicity tests of the ascospore progeny derived from crosses of field isolates and host-specific testers revealed that none of the ascospore progeny were as virulent as the parents, despite showing compatible reactions with both rice and finger millet cultivars. These results indicate that recombinant progeny may be at a selective disadvantage despite having an increased host range. This is the first report of the occurrence of high levels of fertility (24 to 52%) in rice isolates of M. grisea in different states of India. In a Southern blot analysis, 58% of 74 isolates were identified as MAT1-1 and 41% as MAT1-2. In this population, 23 Magnaporthe grisea repeat (MGR)-restriction fragment length polymorphism groups or lineages were identified. In terms of lineage composition, the 18 isolates from Meghalaya showed maximal diversity with nine lineages.


1985 ◽  
Vol 27 (6) ◽  
pp. 697-704 ◽  
Author(s):  
Hei Leung ◽  
Paul H. Williams

Pyricularia oryzae (teleomorph: Magnaporthe grisea) parasitizes a variety of gramineous hosts and causes the rice blast disease worldwide. Through matings among P. oryzae isolates from rice, finger millet, and weeping lovegrass the inheritance of electrophoretic variants of six enzymes, phosphoglucomutase (PGM), phosphoglucose isomerase (PGI), glycerate-2-dehydrogenase (G2DH), malate dehydrogenase-3 (MDH-3), lactate dehydrogenase-1 (LDH-1), and lactate dehydrogenase-3 (LDH-3) was determined. All six variants were under single gene control as determined by tetrad and random spore analysis. However, at Ldh-3 and Mdh-3, there were consistent excesses of variant alleles among ascospore segregants. Preliminary data on the genetic control of hermaphroditism suggested that maleness in two Japanese rice isolates might be due to a single gene mutation. Linkage analyses among the six electrophoretic markers, mating type, and hermaphroditism suggested loose linkage between Pgm and G2dh with a recombination frequencies of 43.0%.Key words: linkage, Magnaporthe grisea, rice blast fungus.


Author(s):  
S. K. Pattanaaik ◽  
B. N. Hazarika ◽  
A. K. Pandey ◽  
P. Debnath

The shifting cultivation in Arunachal Pradesh is dynamic in nature and is known as ‘Jhum’. Upland rice is the main crop grown in mixture with maize, foxtail, finger millet, beans, cassava, yam, banana, sweet potato, ginger, chillies, vegetables, etc. in such system. The single crop of rice is preferred in the second year and this continues for 2-3 years and then it is left for fertility build up through regeneration of vegetation. The period is known as ‘fallow period’. But this leads to considerable soil erosion due to heavy intense rainfall instead of increasing its fertility. The fallow period has been reduced from 10-20 years to 5-7 years. Fortunately the mindset of the jhumias of East Siang district of Arunachal Pradesh, India has been changed. They cultivate citrus, bamboo and tache (wallichia) trees in these fallow lands, which not only prevent the land from soil erosion, but also give income even from a short fallow period. This is a little shift from the traditional practice towards a sustainable practice adopted by the jhumias. The paper presents the current scenario of settled cultivation from traditional jhum in reference to East Siang district of Arunachal Pradesh.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 693-703
Author(s):  
Hitoshi Nakayashiki ◽  
Kanako Kiyotomi ◽  
Yukio Tosa ◽  
Shigeyuki Mayama

Abstract MAGGY is a gypsy-like LTR retrotransposon isolated from the blast fungus Pyricularia grisea (teleomorph, Magnaporthe grisea). We examined transposition of MAGGY in three P. grisea isolates (wheat, finger millet, and crabgrass pathogen), which did not originally possess a MAGGY element, and in two heterologous species of filamentous fungi, Colletotrichum lagenarium and P. zingiberi. Genomic Southern analysis of MAGGY transformants suggested that transposition of MAGGY occurred in all filamentous fungi tested. In contrast, no transposition was observed in any transformants with a modified MAGGY containing a 513-bp deletion in the reverse transcriptase domain. When a MAGGY derivative carrying an artificial intron was introduced into the wheat isolate of P. grisea and C. lagenarium, loss of the intron was observed. These results showed that MAGGY can undergo autonomous RNA-mediated transposition in heterologous filamentous fungi. The frequency of transposition differed among fungal species. MAGGY transposed actively in the wheat isolate of P. grisea and P. zingiberi, but transposition in C. lagenarium appeared to be rare. This is the first report that demonstrates active transposition of a fungal transposable element in heterologous hosts. Possible usage of MAGGY as a genetic tagging tool in filamentous fungi is discussed.


Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1784-1789 ◽  
Author(s):  
Talluri Kiran Babu ◽  
Rajan Sharma ◽  
R. P. Thakur ◽  
Hari D. Upadhyaya ◽  
P. Narayan Reddy ◽  
...  

Blast, caused by Pyricularia grisea (teleomorph: Magnaporthe grisea), is the most devastating disease of finger millet affecting production, utilization, and trade in Africa and Southeast Asia. An attempt was made to select a set of putative host differentials that can be used to determine virulence diversity in finger-millet-infecting populations of M. grisea. Thus, a differential set comprising eight germplasm accessions selected from finger millet core collection (IE 2911, IE 2957, IE 3392, IE 4497, IE 5091, IE 6240, IE 6337, and IE 7079) and a resistant (‘GPU 28’) and a susceptible (‘VR 708’) variety was developed. This differential set was used to study pathogenic variation in 25 isolates of M. grisea collected from Karnataka, Telangana, and Andhra Pradesh states in India. Based on the reaction (virulent = score ≥4 and avirulent = score ≤3 on a 1-to-9 scale) on host differentials, nine pathotypes were identified among 25 M. grisea isolates. Pathotype 9, represented by isolate Pg23 from Vizianagaram, was the most virulent because it could infect all of the host differentials except GPU 28. This study will be helpful in devising strategies for monitoring virulence change in M. grisea populations, and for identification of blast resistance in finger millet for use in disease resistance breeding programs.


Sign in / Sign up

Export Citation Format

Share Document