scholarly journals Cross-Compatibility and Distribution of Mating Type Alleles of the Rice Blast Fungus Magnaporthe grisea in India

Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 700-704 ◽  
Author(s):  
B. V. Dayakar ◽  
N. N. Narayanan ◽  
S. S. Gnanamanickam

Two hundred twenty-seven isolates of Magnaporthe grisea isolated from blast-infected rice tissues from different states of India were tested with MAT1-1 and MAT1-2 fertile standard testers to determine their mating type. Of the 227 monoconidial isolates, 90 (39.6%) were fertile and 137 (60.4%) were infertile and did not produce perithecia when mated with any of the four testers. In the states of Meghalaya and Himachal Pradesh, both mating types were found. In the states of Andaman Islands, Andhra Pradesh, Karnataka, Haryana, and Punjab, only mating type MAT1-1 was identified. In states where MAT1-2 occurred, its frequency was low. Among the 90 fertile isolates, 40 (44.4%) produced perithecia, asci, and ascospores, and 11 of those isolates produced perithecia, asci, and ascospores with both MAT1-2 testers, KA-9 of finger millet, and GUY11 of rice origin. However, when monoconidial isolates were mated among themselves, isolates from the same field produced only barren perithecia. Pathogenicity tests of the ascospore progeny derived from crosses of field isolates and host-specific testers revealed that none of the ascospore progeny were as virulent as the parents, despite showing compatible reactions with both rice and finger millet cultivars. These results indicate that recombinant progeny may be at a selective disadvantage despite having an increased host range. This is the first report of the occurrence of high levels of fertility (24 to 52%) in rice isolates of M. grisea in different states of India. In a Southern blot analysis, 58% of 74 isolates were identified as MAT1-1 and 41% as MAT1-2. In this population, 23 Magnaporthe grisea repeat (MGR)-restriction fragment length polymorphism groups or lineages were identified. In terms of lineage composition, the 18 isolates from Meghalaya showed maximal diversity with nine lineages.

Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 36-40 ◽  
Author(s):  
G. Viji ◽  
S. S. Gnanamanickam

Production of perithecia, asci, and ascospores by Indian isolates of Magnaporthe grisea is rare and has not been found among the Southern Indian isolates of the blast pathogen. From among 138 monoconidial isolates that infect rice and other hosts, we now report the distribution of mating types (MAT1-1 and MAT1-2) of M. grisea in finger millet and paragrass (Brachiaria mutica)-infecting isolates. Twenty-eight of the 96 finger millet isolates, 5 of the 16 paragrass isolates, and none of the 26 rice isolates produced fertile perithecia in laboratory matings with fertile testers. Backcrosses of ascospore progenies to the parental M. grisea isolate but not to the tester strain resulted in fertile perithecial formation, and a further backcrossing scheme indicated definite fertility patterns of Mendelian inheritance in M. grisea.


1985 ◽  
Vol 27 (6) ◽  
pp. 697-704 ◽  
Author(s):  
Hei Leung ◽  
Paul H. Williams

Pyricularia oryzae (teleomorph: Magnaporthe grisea) parasitizes a variety of gramineous hosts and causes the rice blast disease worldwide. Through matings among P. oryzae isolates from rice, finger millet, and weeping lovegrass the inheritance of electrophoretic variants of six enzymes, phosphoglucomutase (PGM), phosphoglucose isomerase (PGI), glycerate-2-dehydrogenase (G2DH), malate dehydrogenase-3 (MDH-3), lactate dehydrogenase-1 (LDH-1), and lactate dehydrogenase-3 (LDH-3) was determined. All six variants were under single gene control as determined by tetrad and random spore analysis. However, at Ldh-3 and Mdh-3, there were consistent excesses of variant alleles among ascospore segregants. Preliminary data on the genetic control of hermaphroditism suggested that maleness in two Japanese rice isolates might be due to a single gene mutation. Linkage analyses among the six electrophoretic markers, mating type, and hermaphroditism suggested loose linkage between Pgm and G2dh with a recombination frequencies of 43.0%.Key words: linkage, Magnaporthe grisea, rice blast fungus.


Plant Disease ◽  
2003 ◽  
Vol 87 (8) ◽  
pp. 896-900 ◽  
Author(s):  
Ailton Reis ◽  
Christine D. Smart ◽  
William E. Fry ◽  
Luiz A. Maffia ◽  
Eduardo S. G. Mizubuti

The population of Phytophthora infestans in Brazil was first characterized 12 years ago. In this research, isolates of P. infestans from potato (n = 184) and tomato (n = 267) collected in southern and southeastern Brazil were characterized to provide more detailed analysis of the current structure of the population. All 451 isolates were analyzed for mating type, and subsets of the isolates were analyzed for allozymes, restriction fragment length polymorphism fingerprint, mtDNA haplotypes, and metalaxyl resistance. Tomato isolates were all of A1 mating type, mtDNA Ib, and US-1 genotype or some variant within this clonal lineage. Of the potato isolates, 82% were A2 mating type, mtDNA IIa, BR-1 genotype, which is a new lineage of P. infestans. All A2 isolates were found on potato, whereas 91% of the A1 isolates were from tomato. A1 and A2 isolates were never found in the same field. The frequency of resistance to metalaxyl was higher in isolates from tomato (55%) than in isolates from potato (38%). After more than a decade of coexistence of isolates of the A1 and A2 mating types, the population was highly clonal, dominated by the BR-1 and US-1 clonal lineages.


2005 ◽  
Vol 2 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Wang Bao-Hua ◽  
Lu Guo-Dong ◽  
Li Hai-Ming ◽  
Lin Yan ◽  
Wang Zong-Hua

AbstractAnalysis of mating type can provide an evaluation of the population genetic diversity of the rice blast fungus,Magnaporthe grisea. According to the sequences ofMAT1-1andMAT1-2genes of the fungus, two pairs of PCR primers specific to theMAT1-1andMAT1-2alleles were designed, and the PCR thermal profile was also optimized. To confirm its application in mating type assessment, 10 tester isolates were tested by PCR. The PCR amplification pattern of these tester isolates corresponded to their known mating type. Furthermore, 150 rice-field isolates from Fujian Province were mated with tester isolates GUY11 and KA3 side by side and also tested by PCR. Results showed that 95.1% of 123 fertile isolates were the same in mating type as determined by both PCR-amplified allele-specific fragments and mating with GUY11/KA3. Among 27 sterile isolates determined by GUY11 and KA3, seven wereMAT1-1and 20 wereMAT1-2as determined by PCR. This study indicates that PCR is applicable in assessingM. griseamating type and especially is capable of predicting the potential mating type of sterile isolates in the natural population of the fungus.


Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1784-1789 ◽  
Author(s):  
Talluri Kiran Babu ◽  
Rajan Sharma ◽  
R. P. Thakur ◽  
Hari D. Upadhyaya ◽  
P. Narayan Reddy ◽  
...  

Blast, caused by Pyricularia grisea (teleomorph: Magnaporthe grisea), is the most devastating disease of finger millet affecting production, utilization, and trade in Africa and Southeast Asia. An attempt was made to select a set of putative host differentials that can be used to determine virulence diversity in finger-millet-infecting populations of M. grisea. Thus, a differential set comprising eight germplasm accessions selected from finger millet core collection (IE 2911, IE 2957, IE 3392, IE 4497, IE 5091, IE 6240, IE 6337, and IE 7079) and a resistant (‘GPU 28’) and a susceptible (‘VR 708’) variety was developed. This differential set was used to study pathogenic variation in 25 isolates of M. grisea collected from Karnataka, Telangana, and Andhra Pradesh states in India. Based on the reaction (virulent = score ≥4 and avirulent = score ≤3 on a 1-to-9 scale) on host differentials, nine pathotypes were identified among 25 M. grisea isolates. Pathotype 9, represented by isolate Pg23 from Vizianagaram, was the most virulent because it could infect all of the host differentials except GPU 28. This study will be helpful in devising strategies for monitoring virulence change in M. grisea populations, and for identification of blast resistance in finger millet for use in disease resistance breeding programs.


Plant Disease ◽  
2002 ◽  
Vol 86 (8) ◽  
pp. 827-832 ◽  
Author(s):  
G. Viji ◽  
W. Uddin

Isolates of Magnaporthe grisea causing gray leaf spot of perennial ryegrass (PR) (Lolium perenne) and St. Augustinegrass (SA) (Stenotaphrum secundatum) were analyzed for mating compatibility and fertility. A total of 312 isolates of M. grisea from PR and 62 isolates from SA were paired with hermaphroditic tester strains from finger millet (Eleusine coracana), rice (Oryza sativa), and wheat (Triticum aestivum). All the PR isolates belonged to a single mating type, MAT1-2. Male fertility was observed in all these isolates. Asci and ascospores were not produced regardless of their developmental stage. Of the 139 (44.6%) isolates from PR that formed perithecia with the fertile tester strains, 83 (59.7%) were highly fertile, 33 (23.7%) were intermediately fertile, and 23 (16.5%) were low in fertility. Both mating types were observed among the isolates of SA, where MAT1-1 predominated the MAT1-2 type. An equal number of male and female fertile isolates were detected among these isolates obtained from a single location; however, none of the isolates behaved as hermaphrodites. Few ascospores were produced in crosses between two isolates of SA and a finger millet tester. Of the 62 monoconidial isolates of SA tested, 19 (30.6%) isolates formed perithecia, of which 5 (26.3%) were highly fertile, 7 (36.8%) were intermediately fertile, 7 (36.8%) were low in fertility, and 43 (69.4%) were infertile. The results of this study indicate that the sexual stage may not be a significant factor contributing to the genetic variation the gray leaf spot pathogen population.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 238-242 ◽  
Author(s):  
Jing Zeng ◽  
Shujie Feng ◽  
Jiangqiao Cai ◽  
Ling Wang ◽  
Fei Lin ◽  
...  

A collection of 520 field isolates of the rice blast fungus (Magnaporthe oryzae) originating from five provinces in China was assessed for mating type and sexual fertility. One of the two tester sets was composed of isolates collected from barley and the other from rice. Two mating types (MAT1-1 and MAT1-2) were identified among the 443 fertile isolates. The two mating types were roughly in balance with one another in the southwestern region but one or the other predominated in the southeastern and southern regions. Male-only fertile isolates were the most common, and only a few hermaphroditic and no female only fertile isolates were detected. The fertility level of the isolates was variable. Isolates from Jiangsu were more fertile than those from Fujian. The mating capacity of the testers collected from barley was higher than that of those collected from rice, but this was because the MAT1-2 testers differed very significantly from one another. In contrast, the mating capacities of the two MAT1-1 testers were similar to one another.


2020 ◽  
Vol 12 (4) ◽  
pp. 243-258 ◽  
Author(s):  
Wen-Juan Ma ◽  
Fantin Carpentier ◽  
Tatiana Giraud ◽  
Michael E Hood

Abstract Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1437-1444
Author(s):  
C Ian Robertson ◽  
Kirk A Bartholomew ◽  
Charles P Novotny ◽  
Robert C Ullrich

The Aα locus is one of four master regulatory loci that determine mating type and regulate sexual development in Schizophyllum commune. We have made a plasmid containing a URA1 gene disruption of the Aα Y1 gene. Y1 is the sole Aα gene in Aα1 strains. We used the plasmid construction to produce an Aα null (i.e., AαΔ) strain by replacing the genomic Y1 gene with URA1 in an Aα1 strain. To characterize the role of the Aα genes in the regulation of sexual development, we transformed various Aα Y and Z alleles into AαΔ strains and examined the acquired mating types and mating abilities of the transformants. These experiments demonstrate that the Aα Y gene is not essential for fungal viability and growth, that a solitary Z Aα mating-type gene does not itself activate development, that Aβ proteins are sufficient to activate the A developmental pathway in the absence of Aα proteins and confirm that Y and Z genes are the sole determinants of Aα mating type. The data from these experiments support and refine our model of the regulation of A-pathway events by Y and Z proteins.


2017 ◽  
Vol 142 (4) ◽  
pp. 260-264
Author(s):  
Ping Li ◽  
Dong Liu ◽  
Min Guo ◽  
Yuemin Pan ◽  
Fangxin Chen ◽  
...  

Sexual reproduction in the plant parasite Phytophthora capsici Leonian requires the interaction of two distinct mating types, A1 and A2. Co-occurrence of these mating types can enhance the genetic diversity of P. capsici and alter its virulence or resistance characteristics. Using an intersimple sequence repeat (ISSR) screen of microsatellite diversity, we identified, cloned, and sequenced a novel 1121-base pair (bp) fragment specific to the A1 mating type of P. capsici. Primers Pcap-1 and Pcap-2 were designed from this DNA fragment to specifically detect the A1 mating type. Polymerase chain reaction (PCR) using these primers amplified an expected 997-bp fragment from known A1 mating types, but yielded a 508-bp fragment from known A2 mating types. This PCR-based assay could be adapted to accurately and rapidly detect the co-occurrence of A1 and A2 P. capsici mating types from field material.


Sign in / Sign up

Export Citation Format

Share Document