Sustainable Mobility and Public Transportation Systems in Medium-Sized Cities

Author(s):  
Elias Papastavrinidis ◽  
George Kollaros ◽  
Antonia Athanasopoulou ◽  
Vasiliki Kollarou
2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Alejandro Tirachini ◽  
Oded Cats

The COVID-19 pandemic poses a great challenge for contemporary public transportation worldwide, resulting from an unprecedented decline in demand and revenue. In this paper, we synthesize the state-of-the-art, up to early June 2020, on key developments regarding public transportation and the COVID-19 pandemic, including the different responses adopted by governments and public transportation agencies around the world, and the research needs pertaining to critical issues that minimize contagion risk in public transportation in the so-called post-lockdown phase. While attempts at adherence to physical distancing (which challenges the very concept of mass public transportation) are looming in several countries, the latest research shows that for closed environments such as public transportation vehicles, the proper use of face masks has significantly reduced the probability of contagion. The economic and social effects of the COVID-19 outbreak in public transportation extend beyond service performance and health risks to financial viability, social equity, and sustainable mobility. There is a risk that if the public transportation sector is perceived as poorly transitioning to post-pandemic conditions, that viewing public transportation as unhealthy will gain ground and might be sustained. To this end, this paper identifies the research needs and outlines a research agenda for the public health implications of alternative strategies and scenarios, specifically measures to reduce crowding in public transportation. The paper provides an overview and an outlook for transit policy makers, planners, and researchers to map the state-of-affairs and research needs related to the impacts of the pandemic crisis on public transportation. Some research needs require urgent attention given what is ultimately at stake in several countries: restoring the ability of public transportation systems to fulfill their societal role.


Author(s):  
Jiali Zhou ◽  
Haris N. Koutsopoulos

The transmission risk of airborne diseases in public transportation systems is a concern. This paper proposes a modified Wells-Riley model for risk analysis in public transportation systems to capture the passenger flow characteristics, including spatial and temporal patterns, in the number of boarding and alighting passengers, and in number of infectors. The model is used to assess overall risk as a function of origin–destination flows, actual operations, and factors such as mask-wearing and ventilation. The model is integrated with a microscopic simulation model of subway operations (SimMETRO). Using actual data from a subway system, a case study explores the impact of different factors on transmission risk, including mask-wearing, ventilation rates, infectiousness levels of disease, and carrier rates. In general, mask-wearing and ventilation are effective under various demand levels, infectiousness levels, and carrier rates. Mask-wearing is more effective in mitigating risks. Impacts from operations and service frequency are also evaluated, emphasizing the importance of maintaining reliable, frequent operations in lowering transmission risks. Risk spatial patterns are also explored, highlighting locations of higher risk.


Author(s):  
Adriano Alessandrini ◽  
Riccardo Barbieri ◽  
Lorenzo Berzi ◽  
Fabio Cignini ◽  
Antonino Genovese ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
T. Balan ◽  
D. Robu ◽  
F. Sandu

Mobility mechanisms are key elements of “always connected” smart environments. Since the first mobile IPv4 protocols, the IP mobility solutions have evolved from host mobility to network mobility and migration to IPv6, but there are still use-cases to be covered, especially for redundant multihomed scenarios. Also mobility does not refer only to hosts or individuals, but also to code/applications and to virtual machines. LISP (Locator/Identifier Separation Protocol) can contribute to new solutions for both host mobility and virtual machine mobility (e.g., inside enterprise data centers) by the separation of the identifier and location of a network endpoint. The aim of this paper is to propose a LISP based multihome and load-balanced network architecture for urban environments. Validation is done in an emulated environment for the case of an enterprise with distributed locations, but, furthermore, we extrapolate to other mobile urban scenarios, like the case of providing reliable load-balanced and secured Internet in Public Transportation Systems, with a proposal for an open-source implementation.


Sign in / Sign up

Export Citation Format

Share Document