scholarly journals Creating Trust in Collaborative Embedded Systems

Author(s):  
Samira Akili ◽  
Emilia Cioroaica ◽  
Thomas Kuhn ◽  
Holger Schlingloff

AbstractEffective collaboration of embedded systems relies strongly on the assumption that all components of the system and the system itself operate as expected. A level of trust is established based on that assumption. To verify and validate these assumptions, we propose a systematic procedure that starts at the design phase and spans the runtime of the systems. At design time, we propose system evaluation in pure virtual environments, allowing multiple system behaviors to be executed in a variety of scenarios. At runtime, we suggest performing predictive simulation to get insights into the system’s decisionmaking process. This enables trust to be created in the system part of a cooperation. When cooperation is performed in open, uncertain environments, the negotiation protocols between collaborative systems must be monitored at runtime. By engaging in various negotiation protocols, the participants assign roles, schedule tasks, and combine their world views to allow more resilient perception and planning. In this chapter, we describe two complementary monitoring approaches to address the decentralized nature of collaborative embedded systems.

2021 ◽  
Vol 11 (3) ◽  
pp. 41-57
Author(s):  
C. Ariel Pinto ◽  
Matthew Zurasky ◽  
Fatine Elakramine ◽  
Safae El Amrani ◽  
Raed M. Jaradat ◽  
...  

A recent cyberweapons effectiveness methodology clearly provides a parallel but distinct process from that of kinetic weapons – both for defense and offense purposes. This methodology promotes consistency and improves cyberweapon system evaluation accuracy – for both offensive and defensive postures. However, integrating this cyberweapons effectiveness methodology into the design phase and operations phase of weapons systems development is still a challenge. The paper explores several systems engineering modeling techniques (e.g., SysML) and how they can be leveraged towards an enhanced effectiveness methodology. It highlights how failure mode analyses (e.g., FMEA) can facilitate cyber damage determination and target assessment, how block and parametric diagraming techniques can facilitate characterizing cyberweapons and eventually assess the effectiveness of such weapons and conversely assess vulnerabilities of systems to certain types of cyberweapons.


Author(s):  
David Santiago Velasco Moncada ◽  
Daniel Schneider ◽  
Ana Petrovska ◽  
Nishanth Laxman ◽  
Felix Möhrle ◽  
...  

AbstractTraditionally, integration and quality assurance of embedded systems are done entirely at development time. Moreover, since such systems often perform safety-critical tasks and work in human environments, safety analyses are performed and safety argumentations devised to convince certification authorities of their safety and to certify the systems if necessary. Collaborative embedded systems, however, are designed to integrate and collaborate with other systems dynamically at runtime. A complete prediction and analysis of all relevant properties during the design phase is usually not possible, as many influencing factors are not yet known. This makes the application of traditional safety analysis and certification techniques impractical, as they usually require a complete specification of the system and its context in advance. In the following chapter, we introduce new techniques to meet this challenge and outline a safety certification concept specifically tailored to collaborative embedded systems.


Computers ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Parham Haririan

Dealing with resource constraints is an inevitable feature of embedded systems. Power and performance are the main concerns beside others. Pre-silicon analysis of power and performance in today’s complex embedded designs is a big challenge. Although RTL (Register-Transfer Level) models are more precise and reliable, system-level modeling enables the power and performance analysis of complex and dense designs in the early design phase. Virtual prototypes of systems prepared through architectural simulation provide a means of evaluating non-existing systems with more flexibility and minimum cost. Efficient interplay between power and performance is a key feature within virtual platforms. This article focuses on dynamic voltage and frequency scaling (DVFS), which is a well-known system-level low-power design technique together with its more efficient implementations modeled through architectural simulation. With advent of new computing paradigms and modern application domains with strict resource demands, DVFS and its efficient hardware-managed solutions get even more highlighted. This is mainly because they can react faster to resource demands and thus reduce induced overhead. To that end, they entail an effective collaboration between software and hardware. A case review in the end wraps up the discussed topics.


Author(s):  
Malin Gandor ◽  
Nicolas Jäckel ◽  
Lorenz Käser ◽  
Alexander Schlie ◽  
Ingo Stierand ◽  
...  

AbstractDynamically coupled collaborative embedded systems operate in groups that form, change, and dissolve—often frequently—during their lifetime. Furthermore, the context in which collaborative systems operate is a dynamic one: systems in the context may appear, change their visible behavior, and disappear again. Ensuring safe operation of such collaborative systems is of key importance, while their dynamic nature poses challenges that do not occur in “classical” system design. This starts with the elicitation of the operational context against which the system will be designed—requiring capture of its dynamic nature—and affects all other design phases as well. Novel development methods are required, enabling engineers to deal with the challenges raised by dynamicity in a manageable way. This chapter presents methods that have been developed to support engineers in this task. The methods cover different viewpoints and abstraction levels of the development process, starting at the requirements viewpoint, and glance at the functional and technical design, as well as verification methods for the type of systems envisioned.


2001 ◽  
Vol 28 (10) ◽  
pp. 943-949 ◽  
Author(s):  
Y. Amemori ◽  
S. Yamashita ◽  
M. Ai ◽  
H. Shinoda ◽  
M. Sato ◽  
...  

2003 ◽  
Vol 15 (2) ◽  
pp. 69-71 ◽  
Author(s):  
Thomas W. Schubert

Abstract. The sense of presence is the feeling of being there in a virtual environment. A three-component self report scale to measure sense of presence is described, the components being sense of spatial presence, involvement, and realness. This three-component structure was developed in a survey study with players of 3D games (N = 246) and replicated in a second survey study (N = 296); studies using the scale for measuring the effects of interaction on presence provide evidence for validity. The findings are explained by the Potential Action Coding Theory of presence, which assumes that presence develops from mental model building and suppression of the real environment.


Author(s):  
Jérôme Guegan ◽  
Claire Brechet ◽  
Julien Nelson

Abstract. Computers have long been seen as possible tools to foster creativity in children. In this respect, virtual environments present an interesting potential to support idea generation but also to steer it in relevant directions. A total of 96 school-aged children completed a standard divergent thinking task while being exposed to one of three virtual environments: a replica of the headmistress’s office, a replica of their schoolyard, and a dreamlike environment. Results showed that participants produced more original ideas in the dreamlike and playful environments than in the headmistress’s office environment. Additionally, the contents of the environment influenced the selective exploration of idea categories. We discuss these results in terms of two combined processes: explicit references to sources of inspiration in the environment, and the implicit priming of specific idea categories.


Sign in / Sign up

Export Citation Format

Share Document