Chemistry: Modeling Activation and Transition

Author(s):  
Joseph E. Brenner ◽  
Abir U. Igamberdiev
Keyword(s):  
2011 ◽  
Vol 11 (13) ◽  
pp. 6593-6605 ◽  
Author(s):  
L. Y. Wu ◽  
S. R. Tong ◽  
W. G. Wang ◽  
M. F. Ge

Abstract. The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K) at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.


Author(s):  
Mihai V. Putz ◽  
Marina A. Tudoran ◽  
Marius C. Mirica

The main concepts of electrochemistry are reviewed in a fundamental manner as well for the applicative approach of asymmetric currents in the galvanic cells; the whole electrochemical process is eventually combined with embedded the bondonic chemistry modeling the electronic charge transfer sensitizing the anode electrode and the overall photovoltaic effect through the electrolyte fulfilling the red-ox closed circuit; the resulted bondonic electrochemistry may be suited for integration with the fresh approach of sensitization of the solar cells by the bonding quantum dots (the bondots), see the preceding chapter of the same book, towards a bondonic-bondotic photo-electrochemical integrated and cost-effective photo-current conversion; it may be used as well as for laser-based technique in controlling the electrochemical effects with optical lattices acting towards condensing the electrons into bondons and controlling them thereof.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Mansour A. Foroushani ◽  
Christian Opp ◽  
Michael Groll ◽  
Amirhossein Nikfal

The relationships between monthly recorded ground deposition rates (GDRs) and the spatiotemporal characteristics of dust concentrations in southwest Iran were investigated. A simulation by the Weather Research and Forecasting Model coupled with the Chemistry modeling system (WRF-Chem) was conducted for dust deposition during 2014–2015. The monthly dust deposition values observed at 10 different gauge sites (G01–G10) were mapped to show the seasonal and spatial variations in dust episodes at each location. An analysis of the dust deposition samples, however, confirmed that the region along the deposition sites is exposed to the highest monthly dust load, which has a mean value of 2.4 mg cm−2. In addition, the study area is subjected to seasonally varying deposition, which follows the trend: spring > summer > winter > fall. The modeling results further demonstrate that the increase in dust emissions is followed by a windward convergence over the region (particularly in the spring and summer). Based on the maximum likelihood classification of land use land cover, the modeling results are consistent with observation data at gauge sites for three scenarios [S.I, S.II, and S.III]. The WRF model, in contrast with the corresponding observation data, reveals that the rate factor decreases from the southern [S.III—G08, G09, and G10] through [S.II—G04, G05, G06, and G07] to the northern points [S.I—G01, G02, and G03]. A narrower gap between the modeling results and GDRs is indicated if there is an increase in the number of dust particles moving to lower altitudes or an increase in the dust resident time at high altitudes. The quality of the model forecast is altered by the deposition rate and is sensitive to land surface properties and interactions among land and climate patterns.


2019 ◽  
Vol 213 ◽  
pp. 675-685 ◽  
Author(s):  
L.M.T. Joelsson ◽  
C. Pichler ◽  
E.J.K. Nilsson

Sign in / Sign up

Export Citation Format

Share Document