Classification of COVID19 X-ray Images Based on Transfer Learning InceptionV3 Deep Learning Model

Author(s):  
Hassan Amin ◽  
Ashraf Darwish ◽  
Aboul Ella Hassanien
Author(s):  
Zubair Saeed ◽  
Misha Urooj Khan ◽  
Ali Raza ◽  
Hareem Khan ◽  
Javaria Javed ◽  
...  

2021 ◽  
Author(s):  
Ching-Chung Yang

We propose a concise approach to facilitate the deep learning model for medical image classification of knee osteoarthritis severity. The characteristics of the input X-ray images are sharpened by a modified 5×5 mask before training and testing in this work. We compare the inference accuracies of two experiments using the same architecture with images sharpened and not sharpened respectively. And we find it tangible that the former performs much better than the latter. This technique could also be helpful when applied onto the edge devices for object detection and image segmentation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Omar Faruk ◽  
Eshan Ahmed ◽  
Sakil Ahmed ◽  
Anika Tabassum ◽  
Tahia Tazin ◽  
...  

Deep learning has emerged as a promising technique for a variety of elements of infectious disease monitoring and detection, including tuberculosis. We built a deep convolutional neural network (CNN) model to assess the generalizability of the deep learning model using a publicly accessible tuberculosis dataset. This study was able to reliably detect tuberculosis (TB) from chest X-ray images by utilizing image preprocessing, data augmentation, and deep learning classification techniques. Four distinct deep CNNs (Xception, InceptionV3, InceptionResNetV2, and MobileNetV2) were trained, validated, and evaluated for the classification of tuberculosis and nontuberculosis cases using transfer learning from their pretrained starting weights. With an F1-score of 99 percent, InceptionResNetV2 had the highest accuracy. This research is more accurate than earlier published work. Additionally, it outperforms all other models in terms of reliability. The suggested approach, with its state-of-the-art performance, may be helpful for computer-assisted rapid TB detection.


2020 ◽  
Vol 197 ◽  
pp. 105674
Author(s):  
Dingding Yu ◽  
Kaijie Zhang ◽  
Lingyan Huang ◽  
Bonan Zhao ◽  
Xiaoshan Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Nishimori ◽  
Kunihiko Kiuchi ◽  
Kunihiro Nishimura ◽  
Kengo Kusano ◽  
Akihiro Yoshida ◽  
...  

AbstractCardiac accessory pathways (APs) in Wolff–Parkinson–White (WPW) syndrome are conventionally diagnosed with decision tree algorithms; however, there are problems with clinical usage. We assessed the efficacy of the artificial intelligence model using electrocardiography (ECG) and chest X-rays to identify the location of APs. We retrospectively used ECG and chest X-rays to analyse 206 patients with WPW syndrome. Each AP location was defined by an electrophysiological study and divided into four classifications. We developed a deep learning model to classify AP locations and compared the accuracy with that of conventional algorithms. Moreover, 1519 chest X-ray samples from other datasets were used for prior learning, and the combined chest X-ray image and ECG data were put into the previous model to evaluate whether the accuracy improved. The convolutional neural network (CNN) model using ECG data was significantly more accurate than the conventional tree algorithm. In the multimodal model, which implemented input from the combined ECG and chest X-ray data, the accuracy was significantly improved. Deep learning with a combination of ECG and chest X-ray data could effectively identify the AP location, which may be a novel deep learning model for a multimodal model.


2021 ◽  
Vol 10 (3) ◽  
pp. 137
Author(s):  
Youngok Kang ◽  
Nahye Cho ◽  
Jiyoung Yoon ◽  
Soyeon Park ◽  
Jiyeon Kim

Recently, as computer vision and image processing technologies have rapidly advanced in the artificial intelligence (AI) field, deep learning technologies have been applied in the field of urban and regional study through transfer learning. In the tourism field, studies are emerging to analyze the tourists’ urban image by identifying the visual content of photos. However, previous studies have limitations in properly reflecting unique landscape, cultural characteristics, and traditional elements of the region that are prominent in tourism. With the purpose of going beyond these limitations of previous studies, we crawled 168,216 Flickr photos, created 75 scenes and 13 categories as a tourist’ photo classification by analyzing the characteristics of photos posted by tourists and developed a deep learning model by continuously re-training the Inception-v3 model. The final model shows high accuracy of 85.77% for the Top 1 and 95.69% for the Top 5. The final model was applied to the entire dataset to analyze the regions of attraction and the tourists’ urban image in Seoul. We found that tourists feel attracted to Seoul where the modern features such as skyscrapers and uniquely designed architectures and traditional features such as palaces and cultural elements are mixed together in the city. This work demonstrates a tourist photo classification suitable for local characteristics and the process of re-training a deep learning model to effectively classify a large volume of tourists’ photos.


Author(s):  
Yong-Yeon Jo ◽  
Joon-myoung Kwon ◽  
Ki-Hyun Jeon ◽  
Yong-Hyeon Cho ◽  
Jae-Hyun Shin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document