Metal, Metal-Oxides and Metal Sulfides for Batteries, Fuel Cells, Solar Cells, Photocatalysis and Health Sensors

2021 ◽  
2018 ◽  
Vol 42 (4) ◽  
pp. 2733-2742 ◽  
Author(s):  
Bandari Naresh ◽  
Dinah Punnoose ◽  
S. Srinivasa Rao ◽  
Archana Subramanian ◽  
B. Raja Ramesh ◽  
...  

Metal sulfides have attracted considerable scrutiny compared to metal oxides owing to their distinguished electrochemical properties and various applications, such as solar cells and supercapacitors.


2021 ◽  
Vol 57 (29) ◽  
pp. 3587-3590
Author(s):  
Beili Yi ◽  
Haojie Zhao ◽  
Yue Zhang ◽  
Xiaomeng Si ◽  
Guanqun Zhang ◽  
...  

We propose a novel solvent-free conversion strategy of Pt–ZnO to Pt-ZIF-8. This synthesis strategy may facilitate the discovery of MMOFs that have not been reported previously.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1741
Author(s):  
Seyedeh Nooshin Banitaba ◽  
Andrea Ehrmann

Electrochemical devices convert chemical reactions into electrical energy or, vice versa, electricity into a chemical reaction. While batteries, fuel cells, supercapacitors, solar cells, and sensors belong to the galvanic cells based on the first reaction, electrolytic cells are based on the reversed process and used to decompose chemical compounds by electrolysis. Especially fuel cells, using an electrochemical reaction of hydrogen with an oxidizing agent to produce electricity, and electrolytic cells, e.g., used to split water into hydrogen and oxygen, are of high interest in the ongoing search for production and storage of renewable energies. This review sheds light on recent developments in the area of electrospun electrochemical devices, new materials, techniques, and applications. Starting with a brief introduction into electrospinning, recent research dealing with electrolytic cells, batteries, fuel cells, supercapacitors, electrochemical solar cells, and electrochemical sensors is presented. The paper concentrates on the advantages of electrospun nanofiber mats for these applications which are mostly based on their high specific surface area and the possibility to tailor morphology and material properties during the spinning and post-treatment processes. It is shown that several research areas dealing with electrospun parts of electrochemical devices have already reached a broad state-of-the-art, while other research areas have large space for future investigations.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Yiqiu Xiang ◽  
Ling Xin ◽  
Jiwei Hu ◽  
Caifang Li ◽  
Jimei Qi ◽  
...  

Extensive use of fossil fuels can lead to energy depletion and serious environmental pollution. Therefore, it is necessary to solve these problems by developing clean energy. Graphene materials own the advantages of high electrocatalytic activity, high conductivity, excellent mechanical strength, strong flexibility, large specific surface area and light weight, thus giving the potential to store electric charge, ions or hydrogen. Graphene-based nanocomposites have become new research hotspots in the field of energy storage and conversion, such as in fuel cells, lithium-ion batteries, solar cells and thermoelectric conversion. Graphene as a catalyst carrier of hydrogen fuel cells has been further modified to obtain higher and more uniform metal dispersion, hence improving the electrocatalyst activity. Moreover, it can complement the network of electroactive materials to buffer the change of electrode volume and prevent the breakage and aggregation of electrode materials, and graphene oxide is also used as a cheap and sustainable proton exchange membrane. In lithium-ion batteries, substituting heteroatoms for carbon atoms in graphene composite electrodes can produce defects on the graphitized surface which have a good reversible specific capacity and increased energy and power densities. In solar cells, the performance of the interface and junction is enhanced by using a few layers of graphene-based composites and more electron-hole pairs are collected; therefore, the conversion efficiency is increased. Graphene has a high Seebeck coefficient, and therefore, it is a potential thermoelectric material. In this paper, we review the latest progress in the synthesis, characterization, evaluation and properties of graphene-based composites and their practical applications in fuel cells, lithium-ion batteries, solar cells and thermoelectric conversion.


2016 ◽  
Vol 4 (21) ◽  
pp. 8161-8171 ◽  
Author(s):  
Chandu V. V. M. Gopi ◽  
Mallineni Venkata-Haritha ◽  
Young-Seok Lee ◽  
Hee-Je Kim

Metal sulfide decorated with ZnO NRs (ZnO/CoS, ZnO/NiS, ZnO/CuS and ZnO/PbS) were fabricated and used as efficient CEs for QDSSCs.


Nanoscale ◽  
2018 ◽  
Vol 10 (33) ◽  
pp. 15588-15599 ◽  
Author(s):  
Zoya Sadighi ◽  
Jiapeng Liu ◽  
Francesco Ciucci ◽  
Jang-Kyo Kim

Ternary metal sulfides and ternary metal oxides have received much attention as potential electrodes for high performance rechargeable batteries.


Sign in / Sign up

Export Citation Format

Share Document