Deterministic Chaos Constraints for Control of Massive Swarms

Author(s):  
Josef Schaff
Keyword(s):  
2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


1988 ◽  
Vol 49 (C2) ◽  
pp. C2-413-C2-416
Author(s):  
M. TACHIKAWA ◽  
K. TANII ◽  
F.-L. HONG ◽  
T. TOHEI ◽  
M. KAJITA ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1204
Author(s):  
John H. Graham

Phenotypic variation arises from genetic and environmental variation, as well as random aspects of development. The genetic (nature) and environmental (nurture) components of this variation have been appreciated since at least 1900. The random developmental component (noise) has taken longer for quantitative geneticists to appreciate. Here, I sketch the historical development of the concepts of random developmental noise and developmental instability, and its quantification via fluctuating asymmetry. The unsung pioneers in this story are Hugo DeVries (fluctuating variation, 1909), C. H. Danforth (random variation between monozygotic twins, 1919), and Sewall Wright (random developmental variation in piebald guinea pigs, 1920). The first pioneering study of fluctuating asymmetry, by Sumner and Huestis in 1921, is seldom mentioned, possibly because it failed to connect the observed random asymmetry with random developmental variation. This early work was then synthesized by Boris Astaurov in 1930 and Wilhelm Ludwig in 1932, and then popularized by Drosophila geneticists beginning with Kenneth Mather in 1953. Population phenogeneticists are still trying to understand the origins and behavior of random developmental variation. Some of the developmental noise represents true stochastic behavior of molecules and cells, while some represents deterministic chaos, nonlinear feedback, and symmetry breaking.


2018 ◽  
Vol 26 (10) ◽  
pp. 13686 ◽  
Author(s):  
Lucas B. A. Mélo ◽  
Guillermo F. R. Palacios ◽  
Pedro V. Carelli ◽  
Lúcio H. Acioli ◽  
José R. Rios Leite ◽  
...  

Author(s):  
James Flinders ◽  
John D. Clemens

ABSTRACT:Most natural systems display non-linear dynamic behaviour. This should be true for magma mingling and mixing processes, which may be chaotic. The equations that most nearly represent how a chaotic natural system behaves are insoluble, so modelling involves linearisation. The difference between the solution of the linearised and ‘true’ equation is assumed to be small because the discarded terms are assumed to be unimportant. This may be very misleading because the importance of such terms is both unknown and unknowable. Linearised equations are generally poor descriptors of nature and are incapable of either predicting or retrodicting the evolution of most natural systems. Viewed in two dimensions, the mixing of two or more visually contrasting fluids produces patterns by folding and stretching. This increases the interfacial area and reduces striation thickness. This provides visual analogues of the deterministic chaos within a dynamic magma system, in which an enclave magma is mingling and mixing with a host magma. Here, two initially adjacent enclave blobs may be driven arbitrarily and exponentially far apart, while undergoing independent (and possibly dissimilar) changes in their composition. Examples are given of the wildly different morphologies, chemical characteristics and Nd isotope systematics of microgranitoid enclaves within individual felsic magmas, and it is concluded that these contrasts represent different stages in the temporal evolution of a complex magma system driven by nonlinear dynamics. If this is true, there are major implications for the interpretation of the parts played by enclaves in the genesis and evolution of granitoid magmas.


1990 ◽  
Vol 17 (1) ◽  
pp. 41-44 ◽  
Author(s):  
D. N. Baker ◽  
A. J. Klimas ◽  
R. L. McPherron ◽  
J. Büchner

Sign in / Sign up

Export Citation Format

Share Document