Complexity Measures of Brain Electrophysiological Activity

2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.

Author(s):  
Jafar Zamani ◽  
Ali Boniadi Naieni

Purpose: There are many methods for advertisements of products and neuromarketing is new area in this field. In neuromarketing, we use neuroscience information for revealing Consumer behavior by extracting brain activity. Functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG), and Electroencephalography (EEG) are high efficient tools for investigating the brain activity in neuromarketing. EEG signal is a high temporal resolution and a cheap method for examining the brain activity. Materials and Methods: 32 subjects (16 males and 16 females) aging between 20-35 years old participated in this study. We proposed neuromarketing method exploit EEG system for predicting consumer preferences while they view E-commerce products. We apply some important preprocessing steps for noise and artifacts elimination of the EEG signal. In next step feature extraction methods are applied on the EEG data such as Discrete Wavelet Transform (DWT) and statistical features. The goal of this study is classification of analyzed EEG signal to likes and dislikes using supervised algorithms. We use Support Vector Machine (SVM), Artificial Neural Network (ANN) and Random Forest (RF) for data classification. The mentioned methods were used for whole and lobe brain data. Results: The results show high efficacy for SVM algorithms than other methods. Accuracy, sensitivity, specificity and precision parameters were used for evaluation of the model performance. The results show high performance of SVM algorithms for classification of the data with accuracy more than 87% and 84% for whole and parietal lobe data. Conclusion: We designed a tool with EEG signals for extraction brain activity of consumers using neuromarketing methods. We investigated the effects of advertising on brain activity of consumers by EEG signals measures.


2020 ◽  
Vol 19 (04) ◽  
pp. 2050033 ◽  
Author(s):  
Hamidreza Namazi

Analysis of the brain activity is the major research area in human neuroscience. Besides many works that have been conducted on analysis of brain activity in case of healthy subjects, investigation of brain activity in case of patients with different brain disorders also has aroused the attention of many researchers. An interesting category of works belong to the comparison of brain activity between healthy subjects and patients with brain disorders. In this research, for the first time, we compare the brain activity between adolescents with symptoms of schizophrenia and healthy subjects, by information-based analysis of their Electroencephalography (EEG) signals. For this purpose, we benefit from the Shannon entropy as the indicator of information content. Based on the results of analysis, EEG signal in case of healthy subjects contains more information than EEG signal in case of subjects with schizophrenia. The result of statistical analysis showed the significant variation in the Shannon entropy of EEG signal between healthy adolescents and adolescents with symptoms of schizophrenia in case of P3, O1 and O2 channels. The employed method of analysis in this research can be further extended in order to investigate the variations in the information content of EEG signal in case of subjects with other brain disorders versus healthy subjects.


Author(s):  
Yatindra Kumar ◽  
M. L. Dewal

There are numerous applications of EEG signal processing such as monitoring alertness, coma, and brain death, controlling an aesthesia, investigating epilepsy and locating seizure origin, testing epilepsy drug effects, monitoring the brain development, and investigating mental disorders; where data size is too long and requires long time to observe the data by clinician or neurologist. EEG signal processing techniques can be used effectively in such applications. The configuration of the signal waveform may contain valuable and useful information about the different state of the brain since biological signal is highly random in both time and frequency domain. Thus computerized analysis is necessary. Being a non-stationary signal, suitable analysis is essential for EEG to differentiate the normal EEG and epileptic seizures. The importance of entropy based features to recognize the normal EEGs, and ictal as well as interictal epileptic seizures. Three features, such as, Approximate entropy, Sample entropy, and Spectral entropy are used to take out the quantitative entropy features from the given EEG time series data of various time frames of 0.88s, and 1s .Average value of entropies for epileptic time series is less than non epileptic time series.


Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 717-734
Author(s):  
G. Maragatham ◽  
T. Kirthiga Devi ◽  
P. Savaridassan ◽  
Sachin Garg

Epilepsy is a neurological disorder that disturbs the brain and causes abnormal brain activity. It results in loss of awareness in some cases and unusual behavior and sensations. In this regard, if the seizures could be identified in its earlier stages then the patient can be provided appropriate care and treatment in time and prevent any severe damage to the patient as a whole. In this paper, we try to detect epilepsy using the EEG Signal Recordings and classify them using pre-trained CNN models between preictal and interictal classes. For this we are advocating the use of American Society for Epilepsy Dataset. The focus is on detecting the epilepsy pattern from the EEG recordings in a timely and accurate manner.


2020 ◽  
Vol 28 (6) ◽  
pp. 665-674 ◽  
Author(s):  
Mohamed Rasmi Ashfaq Ahamed ◽  
Mohammad Hossein Babini ◽  
Hamidreza Namazi

BACKGROUND: The human voice is the main feature of human communication. It is known that the brain controls the human voice. Therefore, there should be a relation between the characteristics of voice and brain activity. OBJECTIVE: In this research, electroencephalography (EEG) as the feature of brain activity and voice signals were simultaneously analyzed. METHOD: For this purpose, we changed the activity of the human brain by applying different odours and simultaneously recorded their voices and EEG signals while they read a text. For the analysis, we used the fractal theory that deals with the complexity of objects. The fractal dimension of EEG signal versus voice signal in different levels of brain activity were computed and analyzed. RESULTS: The results indicate that the activity of human voice is related to brain activity, where the variations of the complexity of EEG signal are linked to the variations of the complexity of voice signal. In addition, the EEG and voice signal complexities are related to the molecular complexity of applied odours. CONCLUSION: The employed method of analysis in this research can be widely applied to other physiological signals in order to relate the activities of different organs of human such as the heart to the activity of his brain.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


2021 ◽  
pp. 1-10
Author(s):  
Shahul Mujib Kamal ◽  
Norazryana Mat Dawi ◽  
Hamidreza Namazi

BACKGROUND: Walking like many other actions of a human is controlled by the brain through the nervous system. In fact, if a problem occurs in our brain, we cannot walk correctly. Therefore, the analysis of the coupling of brain activity and walking is very important especially in rehabilitation science. The complexity of movement paths is one of the factors that affect human walking. For instance, if we walk on a path that is more complex, our brain activity increases to adjust our movements. OBJECTIVE: This study for the first time analyzed the coupling of walking paths and brain reaction from the information point of view. METHODS: We analyzed the Shannon entropy for electroencephalography (EEG) signals versus the walking paths in order to relate their information contents. RESULTS: According to the results, walking on a path that contains more information causes more information in EEG signals. A strong correlation (p= 0.9999) was observed between the information contents of EEG signals and walking paths. Our method of analysis can also be used to investigate the relation among other physiological signals of a human and walking paths, which has great benefits in rehabilitation science.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmed I. Sharaf ◽  
Mohamed Abu El-Soud ◽  
Ibrahim M. El-Henawy

Detection of epileptic seizures using an electroencephalogram (EEG) signals is a challenging task that requires a high level of skilled neurophysiologists. Therefore, computer-aided detection provides an asset to the neurophysiologist in interpreting the EEG. This paper introduces a novel approach to recognize and classify the epileptic seizure and seizure-free EEG signals automatically by an intelligent computer-aided method. Moreover, the prediction of the preictal phase of the epilepsy is proposed to assist the neurophysiologist in the clinic. The proposed method presents two perspectives for the EEG signal processing to detect and classify the seizures and seizure-free signals. The first perspectives consider the EEG signal as a nonlinear time series. A tunable Q-wavelet is applied to decompose the signal into smaller segments called subbands. Then a chaotic, statistical, and power spectrum features sets are extracted from each subband. The second perspectives process the EEG signal as an image; hence the gray-level co-occurrence matrix is determined from the image to obtain the textures of contrast, correlation, energy, and homogeneity. Due to a large number of features obtained, a feature selection algorithm based on firefly optimization was applied. The firefly optimization reduces the original set of features and generates a reduced compact set. A random forest classifier is trained for the classification and prediction of the seizures and seizure-free signals. Afterward, a dataset from the University of Bonn, Germany, is used for benchmarking and evaluation. The proposed approach provided a significant result compared with other recent work regarding accuracy, recall, specificity, F-measure, and Matthew’s correlation coefficient.


Author(s):  
Sheikh Md. Rabiul Islam ◽  
◽  
Md. Shakibul Islam ◽  

The electroencephalogram (EEG) is an electrophysiological monitoring strategy that records the spontaneous electrical movement of the brain coming about from ionic current inside the neurons of the brain. The importance of the EEG signal is mainly the diagnosis of different mental and brain neurodegenerative diseases and different abnormalities like seizure disorder, encephalopathy, dementia, memory problem, sleep disorder, stroke, etc. The EEG signal is very useful for someone in case of a coma to determine the level of brain activity. So, it is very important to study EEG generation and analysis. To reduce the complexity of understanding the pathophysiological mechanism of EEG signal generation and their changes, different simulation-based EEG modeling has been developed which are based on anatomical equivalent data. In this paper, Instead of a detailed model a neural mass model has been used to implement different simulation-based EEG models for EEG signal generation which refers to the simplified and straightforward method. This paper aims to introduce obtained EEG signals of own implementation of the Lopes da Silva model, Jansen-Rit model, and Wendling model in Simulink and to compare characteristic features with real EEG signals and better understanding the EEG abnormalities especially the seizure-like signal pattern.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Tahir Ahmad ◽  
Vinod Ramachandran

The mathematical modelling of EEG signals of epileptic seizures presents a challenge as seizure data is erratic, often with no visible trend. Limitations in existing models indicate a need for a generalized model that can be used to analyze seizures without the need for apriori information, whilst minimizing the loss of signal data due to smoothing. This paper utilizes measure theory to design a discrete probability measure that reformats EEG data without altering its geometric structure. An analysis of EEG data from three patients experiencing epileptic seizures is made using the developed measure, resulting in successful identification of increased potential difference in portions of the brain that correspond to physical symptoms demonstrated by the patients. A mapping then is devised to transport the measure data onto the surface of a high-dimensional manifold, enabling the analysis of seizures using directional statistics and manifold theory. The subset of seizure signals on the manifold is shown to be a topological space, verifying Ahmad's approach to use topological modelling.


Sign in / Sign up

Export Citation Format

Share Document