GRAM-SMOT: Top-N Personalized Bundle Recommendation via Graph Attention Mechanism and Submodular Optimization

Author(s):  
M. Vijaikumar ◽  
Shirish Shevade ◽  
M. N. Murty
2020 ◽  
Vol 140 (12) ◽  
pp. 1393-1401
Author(s):  
Hiroki Chinen ◽  
Hidehiro Ohki ◽  
Keiji Gyohten ◽  
Toshiya Takami

2021 ◽  
Vol 11 (14) ◽  
pp. 6625
Author(s):  
Yan Su ◽  
Kailiang Weng ◽  
Chuan Lin ◽  
Zeqin Chen

An accurate dam deformation prediction model is vital to a dam safety monitoring system, as it helps assess and manage dam risks. Most traditional dam deformation prediction algorithms ignore the interpretation and evaluation of variables and lack qualitative measures. This paper proposes a data processing framework that uses a long short-term memory (LSTM) model coupled with an attention mechanism to predict the deformation response of a dam structure. First, the random forest (RF) model is introduced to assess the relative importance of impact factors and screen input variables. Secondly, the density-based spatial clustering of applications with noise (DBSCAN) method is used to identify and filter the equipment based abnormal values to reduce the random error in the measurements. Finally, the coupled model is used to focus on important factors in the time dimension in order to obtain more accurate nonlinear prediction results. The results of the case study show that, of all tested methods, the proposed coupled method performed best. In addition, it was found that temperature and water level both have significant impacts on dam deformation and can serve as reliable metrics for dam management.


Author(s):  
Kai Han ◽  
Shuang Cui ◽  
Tianshuai Zhu ◽  
Enpei Zhang ◽  
Benwei Wu ◽  
...  

Data summarization, i.e., selecting representative subsets of manageable size out of massive data, is often modeled as a submodular optimization problem. Although there exist extensive algorithms for submodular optimization, many of them incur large computational overheads and hence are not suitable for mining big data. In this work, we consider the fundamental problem of (non-monotone) submodular function maximization with a knapsack constraint, and propose simple yet effective and efficient algorithms for it. Specifically, we propose a deterministic algorithm with approximation ratio 6 and a randomized algorithm with approximation ratio 4, and show that both of them can be accelerated to achieve nearly linear running time at the cost of weakening the approximation ratio by an additive factor of ε. We then consider a more restrictive setting without full access to the whole dataset, and propose streaming algorithms with approximation ratios of 8+ε and 6+ε that make one pass and two passes over the data stream, respectively. As a by-product, we also propose a two-pass streaming algorithm with an approximation ratio of 2+ε when the considered submodular function is monotone. To the best of our knowledge, our algorithms achieve the best performance bounds compared to the state-of-the-art approximation algorithms with efficient implementation for the same problem. Finally, we evaluate our algorithms in two concrete submodular data summarization applications for revenue maximization in social networks and image summarization, and the empirical results show that our algorithms outperform the existing ones in terms of both effectiveness and efficiency.


2021 ◽  
Author(s):  
Zhaoyang Niu ◽  
Guoqiang Zhong ◽  
Hui Yu

2021 ◽  
pp. 103789
Author(s):  
Zhuo Li ◽  
Shaojuan Luo ◽  
Meiyun Chen ◽  
Heng Wu ◽  
Tao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document