Geospatial Approach for Water Quality Index Mapping for Drinking Purpose in Guna District, Madhya Pradesh, India

Author(s):  
Ankita Bhardwaj ◽  
Suraj Kumar Singh
2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


2019 ◽  
Vol 2 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Smitarani Lad ◽  
Swati Mukherjee ◽  
Bhavana Umrikar

The emulsification of major constituents in groundwater is accentuated to highlight the impact that is anticipated to be the prime concern due to depleting quality of this resource used for drinking purpose. In view of this, 53 groundwater samples of dug wells taping basaltic water table aquifer located in Haveli taluka adjoining Pune city of Maharashtra, India were collected and analyzed for major cations and anions to evaluate the suitability using water quality index (WQI). The parameters such as pH, Total Hardness (TH), Sodium (Na) and Sulphate (SO4) were assigned with weight 5 and the weight 1 considered as lowest level was assigned to Calcium (Ca++), Magnesium (Mg++), Potassium (K+), Carbonate (CO3--), Bicarbonate (HCO3-) and Phosphate (PO4) and observations were made to know the groundwater quality of the study area. Using these values, the WQI was calculated that revealed according to BIS standards 57% of samples falls in good category, and 43% samples in poor category, while according to WHO standards 38%, 57%, 6% were representing excellent, good and poor category, respectively.


2020 ◽  
Vol 32 (5) ◽  
pp. 1128-1138
Author(s):  
Meenu Agarwal ◽  
Meenakshi Singh ◽  
Jakir Hussain

Water Quality Index (WQI) is a mathematical value for quality of water, which includes the concentration of a number of constituents present in it. Chemical and biological measures of water quality are used to represent water quality index. Measured value of the selected parameters, ideal concentration of that parameter in pure water and standard value given by different quality control organizations are used to determine this number. In the present study, three indexing methods; Weighted Arithmetic Water Quality Index (WAWQI), Groundwater Quality Index (GWQI) and Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) were used to calculate water quality index of groundwater. A hydrochemical analysis of 22 groundwater samples was conducted to evaluate the quality of groundwater for drinking purpose. Ten hydrochemical parameters were selected for computing WQIs of groundwater samples and BIS standards were used for standardization. Analytical results show that 100 % of samples have magnesium and total hardness above the acceptable limit of BIS (10500, 2012). The mean concentration of nitrate was found 196.96 ± 9.3.18 mg/L. Spatial distribution of various parameters shows that south-east part of study area has contaminated groundwater. The results of water quality index shows that drinking water quality of 82 % (WAWQI), 95 % (GWQI) and 77 % (CCME WQI) of groundwater samples were poor to unsuitable type. Water quality index map also reveals that groundwater of village Badhpura, Dhoom Manikpur, Dairy Maccha, Khera Dharampura, Bisrakh road, Duryai and Dujana of district Gautam Budh Nagar of India, was not fit for human consumption.


2021 ◽  
Vol 33 (10) ◽  
pp. 2503-2508
Author(s):  
Rawan H. Alansari ◽  
Rawan N. Alrajhi ◽  
Rana A. Alghamdi

The quality of surface water and groundwater has deteriorated as a result of increased industrialization, urbanization and agricultural practices during the last few decades. Contaminated groundwater can cause major health problems in humans, such as typhoid and other infections. Similar in the case of Rabigh Governorate, the groundwater is one of the main sources of water for domestic and agriculture purposes in its villages situated in western Saudi Arabia. Many factories have been established in Rabigh region in recent years and day to day input of numerous untreated/partially treated water resulting in major environmental problems, one of which is the low quality of groundwater causing serious environmental and health issues. The presented study discusses the ground water as the main available and usable source in extremely climatic condition of arid area of Saudi Arabia. The article proceeds with the brief introduction of ground water, its contamination sources and health hazards. For this, 13 water samples were from the randomly selected wells in Rabigh Governorate for quality examine. Water quality index analysis was conducted, which is a useful technique for fast assessment of the quality of any water resource. Various physical and chemical parameters of water quality index such as pH, temperature, conductivity, turbidity, total dissolved solids (TDS), total suspended solids (TSS), total solids (TS), dissolved oxygen (DO), arsenic and E. coli are measured and analyzed. The values of all groundwater samples are compared with the standard WHO permissible values. The water quality of the wells were classified into “good, poor, very poor and unsuitable for drinking” based on physico-chemical parameters. According to the observed study, water quality range (WQR) for 5 samples (38% of the samples) are of poor quality, 3 samples (23%) are recorded with a very poor quality and 5 samples (38%) are not suitable for drinking purpose due to presence of high conductivity and TDS values. After taking into consideration the presence of E. coli in 31% of the samples (n = 4), about 62% of the samples (n = 8) are not suitable for drinking purpose, only 23% (n = 3) samples are of poor quality and 15% (n = 2) are very poor quality. The findings reveal a decrease in water quality (unsuitable for drinking purpose) in 8 out of 13 collected samples. It is believed that waste and industrial activities have an impact on groundwater quality in the study area, however, a nationwide investigation should be conducted to validate this finding.


Sign in / Sign up

Export Citation Format

Share Document