4D Printing by Fused Deposition Modeling (FDM)

Author(s):  
Mohammad Aberoumand ◽  
Davood Rahmatabadi ◽  
Ahmad Aminzadeh ◽  
Mahmoud Moradi
2021 ◽  
Vol 58 (1) ◽  
pp. 142-153
Author(s):  
Doina Dimonie ◽  
Nicoleta Dragomir ◽  
Rusandica Stoica

In order to improve thermal behavior and dimensional strability of polylactic acid (PLA) designed both for 3D and 4D printing technology-fused deposition modeling (FDM) using a scalable procedure, the polymer was melt compounded with additives which control the morphology by crystallization and/or reinforcing. Using the formulations which provide polylactic acid (PLA) improved thermo-mechanical properties and desired dimensional stability, the new materials were shaped, on a laboratory line, as filaments for printing technology. The selected compounds were than scaled up on a 50 kg/h compounding line into granules which prove to have good shapability as filaments for printing technology (1.85 +/- 0.05 mm diameter, required ovality, good appearance and smooth surface) and performed properly at 3D printing. The obtained results proved that functional properties of PLA can be improved by various methods so that, depending on the reached performances, the new material can be converted through printing technology into items for performance applications. The novelty of the article is related to the fact that it identifies a modifying solution for controlling the morphology of a type of PLA designed for 3D printing that already has an advanced crystallinity.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1353 ◽  
Author(s):  
Mahdi Bodaghi ◽  
Reza Noroozi ◽  
Ali Zolfagharian ◽  
Mohamad Fotouhi ◽  
Saeed Norouzi

The main objective of this paper is to introduce complex structures with self-bending/morphing/rolling features fabricated by 4D printing technology, and replicate their thermo-mechanical behaviors using a simple computational tool. Fused deposition modeling (FDM) is implemented to fabricate adaptive composite structures with performance-driven functionality built directly into materials. Structural primitives with self-bending 1D-to-2D features are first developed by functionally graded 4D printing. They are then employed as actuation elements to design complex structures that show 2D-to-3D shape-shifting by self-bending/morphing. The effects of printing speed on the self-bending/morphing characteristics are investigated in detail. Thermo-mechanical behaviors of the 4D-printed structures are simulated by introducing a straightforward method into the commercial finite element (FE) software package of Abaqus that is much simpler than writing a user-defined material subroutine or an in-house FE code. The high accuracy of the proposed method is verified by a comparison study with experiments and numerical results obtained from an in-house FE solution. Finally, the developed digital tool is implemented to engineer several practical self-morphing/rolling structures.


Author(s):  
G. F. Hu ◽  
A. R. Damanpack ◽  
M. Bodaghi ◽  
W. H. Liao

This paper introduces a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling is employed to program SMPs during depositing the material. This approach is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 4D printed plate structures can transform into 3D curved shell structures by simply heating. A 3D macroscopic constitutive model is developed to predict thermo-mechanical behaviors of the printed SMPs. Governing equations are also established to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric non-linearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is shown that the structural-material model is capable of replicating the main features observed in the experiments.


2020 ◽  
Vol 12 (44) ◽  
pp. 50052-50060
Author(s):  
Qiyi Chen ◽  
Lu Han ◽  
Jingbo Ren ◽  
Lihan Rong ◽  
Pengfei Cao ◽  
...  

2020 ◽  
Vol 26 (5) ◽  
pp. 855-869
Author(s):  
John Carrell ◽  
Garrett Gruss ◽  
Elizabeth Gomez

Purpose This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D printing that encompasses active materials in the printing process to create not only a 3D object but also a 3D object that can perform an active function. FDM is the most accessible form of 3D printing. By providing a review of 4D printing with FDM, this paper has the potential in educating the many FDM 3D printers in an additional capability with 4D printing. Design/methodology/approach This is a review paper. The approach was to search for and review peer-reviewed papers and works concerning 4D printing using FDM. With this discussion of the shape memory effect, shape memory polymers and FDM were also made. Findings 4D printing has become a burgeoning area in addivitive manufacturing research with many papers being produced within the past 3-5 years. This is especially true for 4D printing using FDM. The key findings from this review show the materials and material composites used for 4D printing with FDM and the limitations with 4D printing with FDM. Research limitations/implications Limitations to this paper are with the availability of papers for review. 4D printing is an emerging area of additive manufacturing research. While FDM is a predominant method of 3D printing, it is not a predominant method for 4D printing. This is because of the limitations of FDM, which can only print with thermoplastics. With the popularity of FDM and the emergence of 4D printing, however, this review paper will provide key resources for reference for users that may be interested in 4D printing and have access to a FDM printer. Practical implications Practically, FDM is the most popular method for 3D printing. Review of 4D printing using FDM will provide a necessary resource for FDM 3D printing users and researchers with a potential avenue for design, printing, training and actuation of active parts and mechanisms. Social implications Continuing with the popularity of FDM among 3D printing methods, a review paper like this can provide an initial and simple step into 4D printing for researchers. From continued research, the potential to engage general audiences becomes more likely, especially a general audience that has FDM printers. An increase in 4D printing could potentially lead to more designs and applications of 4D printed devices in impactful fields, such as biomedical, aerospace and sustainable engineering. Overall, the change and inclusion of technology from 4D printing could have a potential social impact that encourages the design and manufacture of such devices and the treatment of said devices to the public. Originality/value There are other 4D printing review papers available, but this paper is the only one that focuses specifically on FDM. Other review papers provide brief commentary on the different processes of 4D printing including FDM. With the specialization of 4D printing using FDM, a more in-depth commentary results in this paper. This will provide many FDM 3D printing users with additional knowledge that can spur more creative research in 4D printing. Further, this paper can provide the impetus for the practical use of 4D printing in more general and educational settings.


Sign in / Sign up

Export Citation Format

Share Document