scholarly journals 4D Printing via an Unconventional Fused Deposition Modeling Route to High-Performance Thermosets

2020 ◽  
Vol 12 (44) ◽  
pp. 50052-50060
Author(s):  
Qiyi Chen ◽  
Lu Han ◽  
Jingbo Ren ◽  
Lihan Rong ◽  
Pengfei Cao ◽  
...  
2021 ◽  
Vol 58 (1) ◽  
pp. 142-153
Author(s):  
Doina Dimonie ◽  
Nicoleta Dragomir ◽  
Rusandica Stoica

In order to improve thermal behavior and dimensional strability of polylactic acid (PLA) designed both for 3D and 4D printing technology-fused deposition modeling (FDM) using a scalable procedure, the polymer was melt compounded with additives which control the morphology by crystallization and/or reinforcing. Using the formulations which provide polylactic acid (PLA) improved thermo-mechanical properties and desired dimensional stability, the new materials were shaped, on a laboratory line, as filaments for printing technology. The selected compounds were than scaled up on a 50 kg/h compounding line into granules which prove to have good shapability as filaments for printing technology (1.85 +/- 0.05 mm diameter, required ovality, good appearance and smooth surface) and performed properly at 3D printing. The obtained results proved that functional properties of PLA can be improved by various methods so that, depending on the reached performances, the new material can be converted through printing technology into items for performance applications. The novelty of the article is related to the fact that it identifies a modifying solution for controlling the morphology of a type of PLA designed for 3D printing that already has an advanced crystallinity.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1353 ◽  
Author(s):  
Mahdi Bodaghi ◽  
Reza Noroozi ◽  
Ali Zolfagharian ◽  
Mohamad Fotouhi ◽  
Saeed Norouzi

The main objective of this paper is to introduce complex structures with self-bending/morphing/rolling features fabricated by 4D printing technology, and replicate their thermo-mechanical behaviors using a simple computational tool. Fused deposition modeling (FDM) is implemented to fabricate adaptive composite structures with performance-driven functionality built directly into materials. Structural primitives with self-bending 1D-to-2D features are first developed by functionally graded 4D printing. They are then employed as actuation elements to design complex structures that show 2D-to-3D shape-shifting by self-bending/morphing. The effects of printing speed on the self-bending/morphing characteristics are investigated in detail. Thermo-mechanical behaviors of the 4D-printed structures are simulated by introducing a straightforward method into the commercial finite element (FE) software package of Abaqus that is much simpler than writing a user-defined material subroutine or an in-house FE code. The high accuracy of the proposed method is verified by a comparison study with experiments and numerical results obtained from an in-house FE solution. Finally, the developed digital tool is implemented to engineer several practical self-morphing/rolling structures.


Author(s):  
Mohammad Aberoumand ◽  
Davood Rahmatabadi ◽  
Ahmad Aminzadeh ◽  
Mahmoud Moradi

Author(s):  
G. F. Hu ◽  
A. R. Damanpack ◽  
M. Bodaghi ◽  
W. H. Liao

This paper introduces a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling is employed to program SMPs during depositing the material. This approach is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 4D printed plate structures can transform into 3D curved shell structures by simply heating. A 3D macroscopic constitutive model is developed to predict thermo-mechanical behaviors of the printed SMPs. Governing equations are also established to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric non-linearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is shown that the structural-material model is capable of replicating the main features observed in the experiments.


2020 ◽  
Vol 26 (7) ◽  
pp. 1277-1288
Author(s):  
Mohammad Amin Rahiminia ◽  
Masoud Latifi ◽  
Mojtaba Sadighi

Purpose The purpose of this paper is to introduce an innovative transversal tubular braid texture and to study the elastic behavior of its 3 D printed structure comparatively to 3 D printed longitudinal tubular braid texture (maypole) to be used as reinforcement. Design/methodology/approach Regarding the lack of proper machines for the production of the proposed texture, the structure of samples was produced as a tubular lattice braid texture using a 3 D printer with the fused deposition modeling method subsequent to simulation by Rhinoceros software. The produced specimens were composited by polyurethane resin. The composite samples were evaluated by the split disk mechanical test to obtain their hoop stress. The structures of the reinforced composites were theoretically analyzed by ANSYS software. Findings The results of the mechanical test and theoretical analysis showed that the composites reinforced with transversal tubular lattice braid have higher strength compared to the composites reinforced with longitudinal ones. This assured that the composite reinforced by transversal tubular lattice braid is reliable to be used as high-performance tube for different applications. Originality/value Further work is carried out to produce the innovated complex structure continuously by a specially designed machine and fibrous materials to reinforce tubular composites in an industrial continual process to be applied for high-pressure fluids flows.


2018 ◽  
Vol 31 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Shenglong Jiang ◽  
Guangxin Liao ◽  
Dingding Xu ◽  
Fenghua Liu ◽  
Wen Li ◽  
...  

Polyetherimide (PEI) is a kind of high-performance polymer, which possesses a high glass transition temperature ( Tg), excellent flame retardancy, low smoke generation, and good mechanical properties. In this article, PEI was applied in the fused deposition modeling (FDM)–based 3-D printing for the first time. The entire process from filament extrusion to printing was studied. It was observed that the filament orientation and nozzle temperature were closely related to the mechanical properties of printed samples. When the nozzle temperature is 370°C, the mean tensile strength of FDM printing parts can reach to 104 MPa, which is only 7% lower than that of injection molded parts. It can be seen that the 0° orientation set of samples show the highest storage modulus (2492 MPa) followed by the 45° samples, and the 90° orientation set of samples show the minimum storage modulus (1420 MPa) at room temperature. The above results indicated that this technique allows the production of parts with adequate mechanical performance, which does not need to be restricted to the production of mock-ups and prototypes. Our work broke the limitations of traditional FDM technology and expanded the types of material available for FDM to the high-temperature engineering plastics.


2019 ◽  
Vol 137 ◽  
pp. 103139 ◽  
Author(s):  
Bin Hu ◽  
Xianbao Duan ◽  
Zehua Xing ◽  
Ziyou Xu ◽  
Chun Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document