Removing Weld Defect Causes in Aviation Stainless Steel Piping Elements

Author(s):  
Alexander S. Kravchenko ◽  
Pavel V. Bakhmatov
1994 ◽  
Vol 33 (2) ◽  
pp. 155-162 ◽  
Author(s):  
D.E. Rawl ◽  
S.L. West ◽  
D.A. Wheeler ◽  
M.R. Louthan

2021 ◽  
Author(s):  
I. Rosyadi

Stainless steel piping has excellent corrosion resistant properties, both internal or external piping surface. In humid circumstances, sea vapor containing chlorine will be trapped on the pipe surface, especially pipes below deck with minimum sun exposure (more humid). Chlorine on the external pipe surface will damage the passive layer of stainless steel pipe. Damage speed is faster than recovery of passive layer stainless steel. This condition lead to a lot of localized pitting corrosion spread. The corrosion was detected visually and carried out with dye penetrant inspection to assure pitting condition. Actual dimension of pitting (depth, diameter) cannot be measured due to limitation of the NDE technique. This pitting corrosion can result hydrocarbon leakage as a process safety event that contributes loss of production opportunity. Without modification circumstances, this condition can be stopped immediately by application of a viscos elastic coating to prevent pitting corrosion propagation. Application of viscos elastic coating is simpler and faster when compared to conventional coating. Viscos elastic coating will protect stainless steel piping surface against oxygen and chloride in humid circumstances so that stainless steel can recover passive layer and stop pitting corrosion.


Author(s):  
Kazunobu Sakamoto ◽  
Takashi Furukawa ◽  
Ichiro Komura ◽  
Yoshinori Kamiyama ◽  
Tsuyoshi Mihara

Japan Nuclear Energy Safety Organization (JNES) has been carrying out the research program entitled “Nondestructive Inspection Technologies for the Cast Stainless Steel Piping” since 2009FY to comprehend the unique ultrasonic wave propagation in the Cast Austenitic Stainless Steel (CASS) and to confirm detection and sizing capability for cracks in the material by currently available ultrasonic testing techniques. The research is also intended to provide inspection staff with the fundamental information of ultrasonic wave propagation in CASS, for educational purpose. In this research program, specimens whose material, size, dimension and welding method are identical to the main coolant piping system in Japanese pressurized water reactors (PWRs) are examined. Results from the study on the capability for inspection of CASS and the unique wave propagation phenomena such as beam skewing are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document