Handwritten Arabic Character Recognition: Comparison of Conventional Machine Learning and Deep Learning Approaches

Author(s):  
Faouci Soumia ◽  
Gaceb Djamel ◽  
Mohammed Haddad
Author(s):  
Muhammad Pervez Akhter ◽  
Zheng Jiangbin ◽  
Irfan Raza Naqvi ◽  
Mohammed AbdelMajeed ◽  
Tehseen Zia

Author(s):  
Muhammad Pervez Akhter ◽  
Zheng Jiangbin ◽  
Irfan Raza Naqvi ◽  
Mohammed AbdelMajeed ◽  
Tehseen Zia

2021 ◽  
Vol 11 (16) ◽  
pp. 7561
Author(s):  
Umair Iqbal ◽  
Johan Barthelemy ◽  
Wanqing Li ◽  
Pascal Perez

Blockage of culverts by transported debris materials is reported as the salient contributor in originating urban flash floods. Conventional hydraulic modeling approaches had no success in addressing the problem primarily because of the unavailability of peak floods hydraulic data and the highly non-linear behavior of debris at the culvert. This article explores a new dimension to investigate the issue by proposing the use of intelligent video analytics (IVA) algorithms for extracting blockage related information. The presented research aims to automate the process of manual visual blockage classification of culverts from a maintenance perspective by remotely applying deep learning models. The potential of using existing convolutional neural network (CNN) algorithms (i.e., DarkNet53, DenseNet121, InceptionResNetV2, InceptionV3, MobileNet, ResNet50, VGG16, EfficientNetB3, NASNet) is investigated over a dataset from three different sources (i.e., images of culvert openings and blockage (ICOB), visual hydrology-lab dataset (VHD), synthetic images of culverts (SIC)) to predict the blockage in a given image. Models were evaluated based on their performance on the test dataset (i.e., accuracy, loss, precision, recall, F1 score, Jaccard Index, region of convergence (ROC) curve), floating point operations per second (FLOPs) and response times to process a single test instance. Furthermore, the performance of deep learning models was benchmarked against conventional machine learning algorithms (i.e., SVM, RF, xgboost). In addition, the idea of classifying deep visual features extracted by CNN models (i.e., ResNet50, MobileNet) using conventional machine learning approaches was also implemented in this article. From the results, NASNet was reported most efficient in classifying the blockage images with the 5-fold accuracy of 85%; however, MobileNet was recommended for the hardware implementation because of its improved response time with 5-fold accuracy comparable to NASNet (i.e., 78%). Comparable performance to standard CNN models was achieved for the case where deep visual features were classified using conventional machine learning approaches. False negative (FN) instances, false positive (FP) instances and CNN layers activation suggested that background noise and oversimplified labelling criteria were two contributing factors in the degraded performance of existing CNN algorithms. A framework for partial automation of the visual blockage classification process was proposed, given that none of the existing models was able to achieve high enough accuracy to completely automate the manual process. In addition, a detection-classification pipeline with higher blockage classification accuracy (i.e., 94%) has been proposed as a potential future direction for practical implementation.


2021 ◽  
Author(s):  
Yue Wang ◽  
Ye Ni ◽  
Xutao Li ◽  
Yunming Ye

Wildfires are a serious disaster, which often cause severe damages to forests and plants. Without an early detection and suitable control action, a small wildfire could grow into a big and serious one. The problem is especially fatal at night, as firefighters in general miss the chance to detect the wildfires in the very first few hours. Low-light satellites, which take pictures at night, offer an opportunity to detect night fire timely. However, previous studies identify night fires based on threshold methods or conventional machine learning approaches, which are not robust and accurate enough. In this paper, we develop a new deep learning approach, which determines night fire locations by a pixel-level classification on low-light remote sensing image. Experimental results on VIIRS data demonstrate the superiority and effectiveness of the proposed method, which outperforms conventional threshold and machine learning approaches.


2020 ◽  
Vol 10 (11) ◽  
pp. 2532-2542
Author(s):  
Junho Ahn ◽  
Thi Kieu Khanh Ho ◽  
Jaeyong Kang ◽  
Jeonghwan Gwak

A large number of studies that use artificial intelligence (AI) methodologies to analyze medical imaging and support computer-aided diagnosis have been conducted in the biomedical engineering domain. Owing to the advances in dental diagnostic X-ray systems such as panoramic radiographs, periapical radiographs, and dental computed tomography (CT), especially, dual-energy cone beam CT (CBCT), dental image analysis now presents more opportunities to discover new results and findings. Recent researches on dental image analysis have been increasingly incorporating analytics that utilize AI methodologies that can be divided into conventional machine learning and deep learning approaches. This review first covers the theory on dual-energy CBCT and its applications in dentistry. Then, analytical methods for dental image analysis using conventional machine learning and deep learning methods are described. We conclude by discussing the issues and suggesting directions for research in future.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6392
Author(s):  
Lauran R. Brewster ◽  
Ali K. Ibrahim ◽  
Breanna C. DeGroot ◽  
Thomas J. Ostendorf ◽  
Hanqi Zhuang ◽  
...  

Inertial measurement unit sensors (IMU; i.e., accelerometer, gyroscope and magnetometer combinations) are frequently fitted to animals to better understand their activity patterns and energy expenditure. Capable of recording hundreds of data points a second, these sensors can quickly produce large datasets that require methods to automate behavioral classification. Here, we describe behaviors derived from a custom-built multi-sensor bio-logging tag attached to Atlantic Goliath grouper (Epinephelus itajara) within a simulated ecosystem. We then compared the performance of two commonly applied machine learning approaches (random forest and support vector machine) to a deep learning approach (convolutional neural network, or CNN) for classifying IMU data from this tag. CNNs are frequently used to recognize activities from IMU data obtained from humans but are less commonly considered for other animals. Thirteen behavioral classes were identified during ethogram development, nine of which were classified. For the conventional machine learning approaches, 187 summary statistics were extracted from the data, including time and frequency domain features. The CNN was fed absolute values obtained from fast Fourier transformations of the raw tri-axial accelerometer, gyroscope and magnetometer channels, with a frequency resolution of 512 data points. Five metrics were used to assess classifier performance; the deep learning approach performed better across all metrics (Sensitivity = 0.962; Specificity = 0.996; F1-score = 0.962; Matthew’s Correlation Coefficient = 0.959; Cohen’s Kappa = 0.833) than both conventional machine learning approaches. Generally, the random forest performed better than the support vector machine. In some instances, a conventional learning approach yielded a higher performance metric for particular classes (e.g., the random forest had a F1-score of 0.971 for backward swimming compared to 0.955 for the CNN). Deep learning approaches could potentially improve behavioral classification from IMU data, beyond that obtained from conventional machine learning methods.


Handwritten character recognition is an important subfield of Computer Vision which has the potential to bridge the gap between humans and machines. Machine learning and Deep learning approaches to the problem have yielded acceptable results throughout, yet there is still room for improvement. off-line Kannada handwritten character recognition is another problem statement in which many authors have shown interest, but the obtained results being acceptable. The initial efforts have used Gabor wavelets and moments functions for the characters. With the introduction of Machine Learning, SVMs and feature vectors have been tried to obtain acceptable accuracies. Deep Belief Networks, ANNs have also been used claiming a con- siderable increase in results. Further advanced techniques such as CNN have been reported to be used to recognize Kannada numerals only. In this work, we budge towards solving the problem statement with Capsule Networks which is now the state of the art technology in the field of Computer Vision. We also carefully consider the drawbacks of CNN and its impact on the problem statement, which are solved with the usage of Capsule Networks. Excellent results have been obtained in terms of accuracies. We take a step further to evaluate the technique in terms of specificity, precision and f1-score. The approach has performed extremely well in terms of these measures also


2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


Sign in / Sign up

Export Citation Format

Share Document