Dominant Voiced Speech Segregation and Noise Reduction Pre-processing Module for Hearing Aids and Speech Processing Applications

Author(s):  
Shibani Hamsa ◽  
Youssef Iraqi ◽  
Ismail Shahin ◽  
Naoufel Werghi

This paper introduces technology to improve sound quality, which serves the needs of media and entertainment. Major challenging problem in the speech processing applications like mobile phones, hands-free phones, car communication, teleconference systems, hearing aids, voice coders, automatic speech recognition and forensics etc., is to eliminate the background noise. Speech enhancement algorithms are widely used for these applications in order to remove the noise from degraded speech in the noisy environment. Hence, the conventional noise reduction methods introduce more residual noise and speech distortion. So, it has been found that the noise reduction process is more effective to improve the speech quality but it affects the intelligibility of the clean speech signal. In this paper, we introduce a new model of coherence-based noise reduction method for the complex noise environment in which a target speech coexists with a coherent noise around. From the coherence model, the information of speech presence probability is added to better track noise variation accurately; and during the speech presence and speech absent period, adaptive coherence-based method is adjusted. The performance of suggested method is evaluated in condition of diffuse and real street noise, and it improves the speech signal quality less speech distortion and residual noise.


Author(s):  
Francis Kuk ◽  
Christopher Slugocki ◽  
Petri Korhonen

Abstract Background The effect of context on speech processing has been studied using different speech materials and response criteria. The Repeat-Recall Test (RRT) evaluates listener performance using high context (HC) and low context (LC) sentences; this may offer another platform for studying context use (CU). Objective This article aims to evaluate if the RRT may be used to study how different signal-to-noise ratios (SNRs), hearing aid technologies (directional microphone and noise reduction), and listener working memory capacities (WMCs) interact to affect CU on the different measures of the RRT. Design Double-blind, within-subject repeated measures design. Study Sample Nineteen listeners with a mild-to-moderately severe hearing loss. Data Collection The RRT was administered with participants wearing the study hearing aids under two microphone (omnidirectional vs. directional) by two noise reduction (on vs. off) conditions. Speech was presented from 0 degree at 75 dB sound pressure level and a continuous speech-shaped noise from 180 degrees at SNRs of 0, 5, 10, and 15 dB. The order of SNR and hearing aid conditions was counterbalanced across listeners. Each test condition was completed twice in two 2-hour sessions separated by 1 month. Results CU was calculated as the difference between HC and LC sentence scores for each outcome measure (i.e., repeat, recall, listening effort, and tolerable time). For all outcome measures, repeated measures analyses of variance revealed that CU was significantly affected by the SNR of the test conditions. For repeat, recall, and listening effort measures, these effects were qualified by significant two-way interactions between SNR and microphone mode. In addition, the WMC group significantly affected CU during recall and rating of listening effort, the latter of which was qualified by an interaction between the WMC group and SNR. Listener WMC affected CU on estimates of tolerable time as qualified by significant two-way interactions between SNR and microphone mode. Conclusion The study supports use of the RRT as a tool for measuring how listeners use sentence context to aid in speech processing. The degree to which context influenced scores on each outcome measure of the RRT was found to depend on complex interactions between the SNR of the listening environment, hearing aid features, and the WMC of the listeners.


2021 ◽  
Vol 4 (2) ◽  
pp. 120-124
Author(s):  
Muhammad Ishaq ◽  
Muhammad Hammad Afzal ◽  
Kifayat Ullah

Hearing aids such as cochlear implants have been used for a long by both adults and children. In addition, cochlear implants are used by patients who have severe hearing loss either by birth or after an accident. This paper aims to investigate the engineering challenges bounding the design of cochlear implants and present its possible solution to improve the design of implants. First, a detailed introduction of considered implants is given, followed by aspiration and advantages. Numerous engineering challenges in cochlear implants must be addressed, such as selecting and installing electrodes array inside the cochlea, dealing with the problems that occur during speech processing, noise reduction, etc.


Author(s):  
Isiaka Ajewale Alimi

Digital hearing aids addresses the issues of noise and speech intelligibility that is associated with the analogue types. One of the main functions of the digital signal processor (DSP) of digital hearing aid systems is noise reduction which can be achieved by speech enhancement algorithms which in turn improve system performance and flexibility. However, studies have shown that the quality of experience (QoE) with some of the current hearing aids is not up to expectation in a noisy environment due to interfering sound, background noise and reverberation. It is also suggested that noise reduction features of the DSP can be further improved accordingly. Recently, we proposed an adaptive spectral subtraction algorithm to enhance the performance of communication systems and address the issue of associated musical noise generated by the conventional spectral subtraction algorithm. The effectiveness of the algorithm has been confirmed by different objective and subjective evaluations. In this study, an adaptive spectral subtraction algorithm is implemented using the noise-estimation algorithm for highly non-stationary noisy environments instead of the voice activity detection (VAD) employed in our previous work due to its effectiveness. Also, signal to residual spectrum ratio (SR) is implemented in order to control the amplification distortion for speech intelligibility improvement. The results show that the proposed scheme gives comparatively better performance and can be easily employed in digital hearing aid system for improving speech quality and intelligibility.


2021 ◽  
Vol 25 ◽  
pp. 233121652110144
Author(s):  
Ilja Reinten ◽  
Inge De Ronde-Brons ◽  
Rolph Houben ◽  
Wouter Dreschler

Single microphone noise reduction (NR) in hearing aids can provide a subjective benefit even when there is no objective improvement in speech intelligibility. A possible explanation lies in a reduction of listening effort. Previously, we showed that response times (a proxy for listening effort) to an auditory-only dual-task were reduced by NR in normal-hearing (NH) listeners. In this study, we investigate if the results from NH listeners extend to the hearing-impaired (HI), the target group for hearing aids. In addition, we assess the relevance of the outcome measure for studying and understanding listening effort. Twelve HI subjects were asked to sum two digits of a digit triplet in noise. We measured response times to this task, as well as subjective listening effort and speech intelligibility. Stimuli were presented at three signal-to-noise ratios (SNR; –5, 0, +5 dB) and in quiet. Stimuli were processed with ideal or nonideal NR, or unprocessed. The effect of NR on response times in HI listeners was significant only in conditions where speech intelligibility was also affected (–5 dB SNR). This is in contrast to the previous results with NH listeners. There was a significant effect of SNR on response times for HI listeners. The response time measure was reasonably correlated ( R142 = 0.54) to subjective listening effort and showed a sufficient test–retest reliability. This study thus presents an objective, valid, and reliable measure for evaluating an aspect of listening effort of HI listeners.


2016 ◽  
Vol 27 (09) ◽  
pp. 732-749 ◽  
Author(s):  
Gabriel Aldaz ◽  
Sunil Puria ◽  
Larry J. Leifer

Background: Previous research has shown that hearing aid wearers can successfully self-train their instruments’ gain-frequency response and compression parameters in everyday situations. Combining hearing aids with a smartphone introduces additional computing power, memory, and a graphical user interface that may enable greater setting personalization. To explore the benefits of self-training with a smartphone-based hearing system, a parameter space was chosen with four possible combinations of microphone mode (omnidirectional and directional) and noise reduction state (active and off). The baseline for comparison was the “untrained system,” that is, the manufacturer’s algorithm for automatically selecting microphone mode and noise reduction state based on acoustic environment. The “trained system” first learned each individual’s preferences, self-entered via a smartphone in real-world situations, to build a trained model. The system then predicted the optimal setting (among available choices) using an inference engine, which considered the trained model and current context (e.g., sound environment, location, and time). Purpose: To develop a smartphone-based prototype hearing system that can be trained to learn preferred user settings. Determine whether user study participants showed a preference for trained over untrained system settings. Research Design: An experimental within-participants study. Participants used a prototype hearing system—comprising two hearing aids, Android smartphone, and body-worn gateway device—for ˜6 weeks. Study Sample: Sixteen adults with mild-to-moderate sensorineural hearing loss (HL) (ten males, six females; mean age = 55.5 yr). Fifteen had ≥6 mo of experience wearing hearing aids, and 14 had previous experience using smartphones. Intervention: Participants were fitted and instructed to perform daily comparisons of settings (“listening evaluations”) through a smartphone-based software application called Hearing Aid Learning and Inference Controller (HALIC). In the four-week-long training phase, HALIC recorded individual listening preferences along with sensor data from the smartphone—including environmental sound classification, sound level, and location—to build trained models. In the subsequent two-week-long validation phase, participants performed blinded listening evaluations comparing settings predicted by the trained system (“trained settings”) to those suggested by the hearing aids’ untrained system (“untrained settings”). Data Collection and Analysis: We analyzed data collected on the smartphone and hearing aids during the study. We also obtained audiometric and demographic information. Results: Overall, the 15 participants with valid data significantly preferred trained settings to untrained settings (paired-samples t test). Seven participants had a significant preference for trained settings, while one had a significant preference for untrained settings (binomial test). The remaining seven participants had nonsignificant preferences. Pooling data across participants, the proportion of times that each setting was chosen in a given environmental sound class was on average very similar. However, breaking down the data by participant revealed strong and idiosyncratic individual preferences. Fourteen participants reported positive feelings of clarity, competence, and mastery when training via HALIC. Conclusions: The obtained data, as well as subjective participant feedback, indicate that smartphones could become viable tools to train hearing aids. Individuals who are tech savvy and have milder HL seem well suited to take advantages of the benefits offered by training with a smartphone.


2018 ◽  
Author(s):  
Tim Schoof ◽  
Pamela Souza

Objective: Older hearing-impaired adults typically experience difficulties understanding speech in noise. Most hearing aids address this issue using digital noise reduction. While noise reduction does not necessarily improve speech recognition, it may reduce the resources required to process the speech signal. Those available resources may, in turn, aid the ability to perform another task while listening to speech (i.e., multitasking). This study examined to what extent changing the strength of digital noise reduction in hearing aids affects the ability to multitask. Design: Multitasking was measured using a dual-task paradigm, combining a speech recognition task and a visual monitoring task. The speech recognition task involved sentence recognition in the presence of six-talker babble at signal-to-noise ratios (SNRs) of 2 and 7 dB. Participants were fit with commercially-available hearing aids programmed under three noise reduction settings: off, mild, strong. Study sample: 18 hearing-impaired older adults. Results: There were no effects of noise reduction on the ability to multitask, or on the ability to recognize speech in noise. Conclusions: Adjustment of noise reduction settings in the clinic may not invariably improve performance for some tasks.


2020 ◽  
Vol 24 (4) ◽  
pp. 180-190
Author(s):  
Hyo Jeong Kim ◽  
Jae Hee Lee ◽  
Hyun Joon Shim

Background and Objectives: Although many studies have evaluated the effect of the digital noise reduction (DNR) algorithm of hearing aids (HAs) on speech recognition, there are few studies on the effect of DNR on music perception. Therefore, we aimed to evaluate the effect of DNR on music, in addition to speech perception, using objective and subjective measurements. Subjects and Methods: Sixteen HA users participated in this study (58.00±10.44 years; 3 males and 13 females). The objective assessment of speech and music perception was based on the Korean version of the Clinical Assessment of Music Perception test and word and sentence recognition scores. Meanwhile, for the subjective assessment, the quality rating of speech and music as well as self-reported HA benefits were evaluated. Results: There was no improvement conferred with DNR of HAs on the objective assessment tests of speech and music perception. The pitch discrimination at 262 Hz in the DNR-off condition was better than that in the unaided condition (<i>p</i>=0.024); however, the unaided condition and the DNR-on conditions did not differ. In the Korean music background questionnaire, responses regarding ease of communication were better in the DNR-on condition than in the DNR-off condition (<i>p</i>=0.029). Conclusions: Speech and music perception or sound quality did not improve with the activation of DNR. However, DNR positively influenced the listener’s subjective listening comfort. The DNR-off condition in HAs may be beneficial for pitch discrimination at some frequencies.


Sign in / Sign up

Export Citation Format

Share Document