Optimal Rendezvous with Proportional Navigation Unmanned Aerial Vehicle

Author(s):  
Oleg Cherkasov ◽  
Elina Makieva
Author(s):  
E.I. Makieva ◽  
O. Yu. Cherkasov

The paper analyzes a nonlinear problem of optimal rendezvous of two material points in the horizontal plane. The velocity of both participants is constant modulo. The aim of control is to minimize the final distance between participants under given initial conditions. The approach time is fixed. The angle between the line of sight and the velocity vector of the Participant 1 (P1) is used as a control variable. The Participant (P2) uses the proportional-navigation law. This task may be relevant when planning the approach paths of a tanker aircraft to an unmanned aerial vehicle, or in the case of intercepting an attacking unmanned aerial vehicle by a target simulator missile launched from a real target. The principle of maximum procedure allows reducing optimal control problem to the problem of analyzing the phase portrait of a system of two nonlinear differential equations. A qualitative analysis of the system is performed, the characteristic properties of the trajectories of the participants in the horizontal plane are investigated and the results of numerical solution of the boundary value problem are presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jian Shen ◽  
Qingyu Zhu ◽  
Xiaoguang Wang ◽  
Pengyun Chen

In this paper, the typical fault estimation and dynamic analysis are presented for a leader-follower unmanned aerial vehicle (UAV) formation system with external disturbances. Firstly, a dynamic model with proportional navigation guidance (PNG) control of the UAV formation is built. Then, an intermediate observer design method is adopted to estimate the system states and faults simultaneously. Based on the graph theory, the topology relationship between each node in the UAV formation has been also analyzed. The estimator and the system error have been created. Moreover, the typical faults, including the components failure, airframe damage, communication failure, formation collision, and environmental impact, are also discussed for the UAV system. Based on the fault-tolerant strategy, five familiar fault models are proposed from the perspectives of fault estimation, dynamical disturbances, and formation cooperative control. With an analysis of the results of states and faults estimation, the actuator faults can be estimated precisely with component failure and wind disturbances. Furthermore, the basic dynamic characteristics of the UAV formation are discussed. Besides, a comparison of two cases related to the wind disturbance has been accomplished to verify the performance of the fault estimator and controller. The results illustrate the credibility and applicability of the fault estimation and dynamic control strategies for the UAV system which are proposed in this paper. Finally, an extension about the UAV formation prognostic health management system is expounded from the point of view of the fault-tolerant control, dynamic modeling, and multifault estimation.


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Author(s):  
Amir Birjandi ◽  
◽  
Valentin Guerry ◽  
Eric Bibeau ◽  
Hamidreza Bolandhemmat ◽  
...  

2019 ◽  
Vol E102.B (10) ◽  
pp. 2014-2020
Author(s):  
Yancheng CHEN ◽  
Ning LI ◽  
Xijian ZHONG ◽  
Yan GUO

Sign in / Sign up

Export Citation Format

Share Document