On a nonlinear problem of optimal rendezvous

Author(s):  
E.I. Makieva ◽  
O. Yu. Cherkasov

The paper analyzes a nonlinear problem of optimal rendezvous of two material points in the horizontal plane. The velocity of both participants is constant modulo. The aim of control is to minimize the final distance between participants under given initial conditions. The approach time is fixed. The angle between the line of sight and the velocity vector of the Participant 1 (P1) is used as a control variable. The Participant (P2) uses the proportional-navigation law. This task may be relevant when planning the approach paths of a tanker aircraft to an unmanned aerial vehicle, or in the case of intercepting an attacking unmanned aerial vehicle by a target simulator missile launched from a real target. The principle of maximum procedure allows reducing optimal control problem to the problem of analyzing the phase portrait of a system of two nonlinear differential equations. A qualitative analysis of the system is performed, the characteristic properties of the trajectories of the participants in the horizontal plane are investigated and the results of numerical solution of the boundary value problem are presented.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jian Shen ◽  
Qingyu Zhu ◽  
Xiaoguang Wang ◽  
Pengyun Chen

In this paper, the typical fault estimation and dynamic analysis are presented for a leader-follower unmanned aerial vehicle (UAV) formation system with external disturbances. Firstly, a dynamic model with proportional navigation guidance (PNG) control of the UAV formation is built. Then, an intermediate observer design method is adopted to estimate the system states and faults simultaneously. Based on the graph theory, the topology relationship between each node in the UAV formation has been also analyzed. The estimator and the system error have been created. Moreover, the typical faults, including the components failure, airframe damage, communication failure, formation collision, and environmental impact, are also discussed for the UAV system. Based on the fault-tolerant strategy, five familiar fault models are proposed from the perspectives of fault estimation, dynamical disturbances, and formation cooperative control. With an analysis of the results of states and faults estimation, the actuator faults can be estimated precisely with component failure and wind disturbances. Furthermore, the basic dynamic characteristics of the UAV formation are discussed. Besides, a comparison of two cases related to the wind disturbance has been accomplished to verify the performance of the fault estimator and controller. The results illustrate the credibility and applicability of the fault estimation and dynamic control strategies for the UAV system which are proposed in this paper. Finally, an extension about the UAV formation prognostic health management system is expounded from the point of view of the fault-tolerant control, dynamic modeling, and multifault estimation.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987775 ◽  
Author(s):  
Yanpeng Hu ◽  
Yanping Yang ◽  
Xiaoping Ma ◽  
Shu Li

The near-space solar-powered unmanned aerial vehicle has broad prospects in application owing to its high altitude long-endurance performance. Launching solar-powered unmanned aerial vehicle into the near-space with balloon-borne approach has advantages over the traditional sliding take-off methods, in that it is able to quickly and safely cross the turbulent zone. In this article, we investigate the control technology of balloon-borne launching for the solar-powered unmanned aerial vehicles. First, the motion of the launching process is divided into longitudinal and lateral-directional motion, with the longitudinal process and its equation addressed in detail. We then analyze the flight state and restriction conditions that the unmanned aerial vehicle should meet during the process. Second, the target variables and constraints are selected to formulate the optimization problem. The control variable parameterization method is applied to find the optimal pitch angle in the releasing-and-pulling process. More explicitly, a three-channel attitude stabilization controller is designed, in which the longitudinal channel takes the optimal pitch angle as the pitch instruction, the transverse channel carries out the zero control of the inclination angle, and the course channel takes the stabilization control, respectively. Numerical simulation results show that our proposed control design is capable of accelerating the solar-powered unmanned aerial vehicles from the vertical state and pulling them up to the horizontal cruising flight state, with the flight angle of attack, the maximum speed, and the maximum axial acceleration in the pulling process all within the designed range.


2016 ◽  
Vol 842 ◽  
pp. 132-140
Author(s):  
Tien Dat Nguyen ◽  
Subhan Sdywaliva ◽  
Taufiq Mulyanto

In flying animal world, there are different flapping motions to produce lift and thrust depending on their species and size. Recent development in Unmanned Aerial Vehicle had tried to mimic flying animal. Rather than having two separate systems in providing lift and thrust, the wing upstroke and downstroke movement combined with wing twisting produce the necessary lift and thrust. Insects and some small birds have even the ability to fly hover.The present study is focused on the modeling of wing flapping motion. Instead of only accommodating flapping motion in a vertical plane and spanwise pitching motion, the model permits to include wing lead-lag motion in the horizontal plane. This more degree of freedom permit to model more complex wing flapping motion.


2020 ◽  
Vol 20 (4) ◽  
pp. 31-43
Author(s):  
V.V. Voitovich ◽  
◽  
Yu.V. Petrash ◽  
M.M. Belousov ◽  
E.M. Yungaitis ◽  
...  

The paper presents the results of studies of an omnidirectional dipole antenna designed for installation on an unmanned aerial vehicle of the mini-UAV category. The antenna forms a cir-cular radiation pattern in the horizontal plane with horizontal polarization of the radiated field. Irregularity of the radiation pattern of the antenna under study in free space in the horizontal plane is ±0.2 dB. The antenna contains a minimum number of elements of the feeder path. It has convenient for practical implementation design


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2018 ◽  
pp. 7-13
Author(s):  
Anton M. Mishchenko ◽  
Sergei S. Rachkovsky ◽  
Vladimir A. Smolin ◽  
Igor V . Yakimenko

Results of experimental studying radiation spatial structure of atmosphere background nonuniformities and of an unmanned aerial vehicle being the detection object are presented. The question on a possibility of its detection using optoelectronic systems against the background of a cloudy field in the near IR wavelength range is also considered.


Author(s):  
Amir Birjandi ◽  
◽  
Valentin Guerry ◽  
Eric Bibeau ◽  
Hamidreza Bolandhemmat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document