Perturbations by the Ensemble Transform

2021 ◽  
pp. 115-141
Author(s):  
Kazuo Saito ◽  
Le Duc ◽  
Takumi Matsunobu ◽  
Takuya Kurihana
Keyword(s):  
2021 ◽  
Vol 427 ◽  
pp. 110055
Author(s):  
Aaron Myers ◽  
Alexandre H. Thiéry ◽  
Kainan Wang ◽  
Tan Bui-Thanh

2016 ◽  
Vol 38 (3) ◽  
pp. A1317-A1338 ◽  
Author(s):  
A. Gregory ◽  
C. J. Cotter ◽  
S. Reich

2017 ◽  
Vol 145 (11) ◽  
pp. 4575-4592 ◽  
Author(s):  
Craig H. Bishop ◽  
Jeffrey S. Whitaker ◽  
Lili Lei

To ameliorate suboptimality in ensemble data assimilation, methods have been introduced that involve expanding the ensemble size. Such expansions can incorporate model space covariance localization and/or estimates of climatological or model error covariances. Model space covariance localization in the vertical overcomes problematic aspects of ensemble-based satellite data assimilation. In the case of the ensemble transform Kalman filter (ETKF), the expanded ensemble size associated with vertical covariance localization would also enable the simultaneous update of entire vertical columns of model variables from hyperspectral and multispectral satellite sounders. However, if the original formulation of the ETKF were applied to an expanded ensemble, it would produce an analysis ensemble that was the same size as the expanded forecast ensemble. This article describes a variation on the ETKF called the gain ETKF (GETKF) that takes advantage of covariances from the expanded ensemble, while producing an analysis ensemble that has the required size of the unexpanded forecast ensemble. The approach also yields an inflation factor that depends on the localization length scale that causes the GETKF to perform differently to an ensemble square root filter (EnSRF) using the same expanded ensemble. Experimentation described herein shows that the GETKF outperforms a range of alternative ETKF-based solutions to the aforementioned problems. In cycling data assimilation experiments with a newly developed storm-track version of the Lorenz-96 model, the GETKF analysis root-mean-square error (RMSE) matches the EnSRF RMSE at shorter than optimal localization length scales but is superior in that it yields smaller RMSEs for longer localization length scales.


2009 ◽  
Vol 78 ◽  
pp. S272-S281 ◽  
Author(s):  
Emanuel Coelho ◽  
Germana Peggion ◽  
Clark Rowley ◽  
Gregg Jacobs ◽  
Richard Allard ◽  
...  

2021 ◽  
Author(s):  
Lars Nerger

<p>The second-order exact particle filter NETF (nonlinear ensemble transform filter) is combined with local ensemble transform Kalman filter (LETKF) to build a hybrid filter scheme (LKNETF). The filter combines the stability of the LETKF with the nonlinear properties of the NETF to obtain improved assimilation results for smaller ensembles. Both filter components are localized in a consistent way so that the filter can be applied with high-dimensional models. The degree of filter nonlinearity is defined by a hybrid weight, which shifts the analysis between the LETKF and NETF. Since the NETF is more sensitive to sampling errors than the LETKF, the latter filter should be preferred in linear cases. It is discussed how an adaptive hybrid weight can be defined based on the nonlinearity of the system so that the adaptivity yields a good filter performance in linear and nonlinear situations. The filter behavior is exemplified based on experiments with the chaotic Lorenz-63 and Lorenz-96 models, in which the nonlinearity can be controlled by the length of the forecast phase.</p>


Sign in / Sign up

Export Citation Format

Share Document