Parallel Assembly Lines with Heterogeneous Workforce: A Cost-Driven Mathematical Model and Simulated Annealing Approach

Author(s):  
Serhan Kökhan ◽  
Ömer Faruk Baykoç
Author(s):  
Kamran Forghani ◽  
S. M. T. Fatemi Ghomi ◽  
Reza Kia

Cell formation, scheduling, and facility layout are three main decisions in designing manufacturing cells. In this paper, we address the integration of these decisions in virtual manufacturing cells considering assembly aspects and process routing. We develop a mathematical model to determine the machine cells, the layout of machines and workstations on the shop floor, the processing route of parts, and the production sequence of operations on the machines. In this mathematical model, material handling costs and cycle time are minimized. To the best of our knowledge, this is the first paper that concurrently addresses the scheduling and layout of virtual manufacturing cells with assembly aspects and so-called criteria. To effectively solve the problem, a Population-based Simulated Annealing (PSA) combined with linear programming is proposed. The practical usability of the developed model is demonstrated in a case study. Finally, instances from the literature are solved to evaluate the performance of the PSA. The comparison results showed the superior performance of the PSA in comparison with CPLEX solver and standard simulated annealing.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Anmol Gupta ◽  
Sanjay Agrawal ◽  
Yash Pal

Abstract In this paper, a mathematical model of a single-channel photovoltaic thermal (PVT) air collector incorporated with a thermoelectric (TE) module has been presented. The overall electrical energy obtained from the photovoltaic thermal-thermoelectric (PVT-TE) collector is 5.78% higher than the PVT collector. Further, the grasshopper optimization algorithm (GOA) and hybrid grasshopper optimization algorithm with simulated annealing (GOA-SA) have been proposed and implemented to optimize the parameters of opaque PVT-TE collector. Although there are different parameters that influence the performance of PVT-TE system, yet in this study only four parameters, viz., length of the channel (L), width of the channel (b), mass flowrate of air in the channel (mair), and temperature of air at the inlet of channel (Tair,i) are considered for optimization. The simulation result demonstrates that the hybrid GOA-SA algorithm turned out to be an exceptionally effective method for optimal tuning of the parameters of the PVT-TE system. The result explicitly shows that the average value of overall electrical efficiency and exergy gain are 15.27% and 27.0565 W, respectively, when the parameters are optimized by the suggested GOA-SA algorithm which is way ahead with respect to the outcomes obtained with that of the calculated values or using GOA algorithm alone.


Author(s):  
Niko Majdandzˇic´ ◽  
Slavko Sebastijanovic´ ◽  
Gordana Maticˇevic´ ◽  
Nebojsˇa Sebastijanovic´

This paper presents a mathematical model of the UPROB (planning system for construction and overhaul) system that was developed for tank assembly lines, construction of thermal energy structures, and for performing an overhaul in complex plants. Planning technology includes utilizing linear diagrams with a direct usage of input data from a plant’s database. A model has been developed to determine the critical path and also, to define steps for the most economical shortening of the entire plan. Several plan variations are developed (according to specified goals) and the management determines the optimal variation. After selecting a plan, it is possible to control and create work orders for individual tasks in certain activities. Task completion percentage, activity cost, and the total cost of the plan are also provided.


2019 ◽  
Vol 33 ◽  
pp. 438-445
Author(s):  
Achim Kampker ◽  
Kai Kreisköther ◽  
Marius Schumacher

2006 ◽  
Vol 103 (2) ◽  
pp. 600-609 ◽  
Author(s):  
Hadi Gökçen ◽  
Kürşad Ağpak ◽  
Recep Benzer

2021 ◽  
Vol 18 (6) ◽  
pp. 8314-8330
Author(s):  
Ningning Zhao ◽  
◽  
Mingming Duan

<abstract> <p>In this study, a multi-objective optimized mathematical model of stand pre-allocation is constructed with the shortest travel distance for passengers, the lowest cost for airlines and the efficiency of stand usage as the overall objectives. The actual data of 12 flights at Lanzhou Zhongchuan Airport are analyzed by application and solved by simulated annealing algorithm. The results of the study show that the total objective function of the constructed model allocation scheme is reduced by 40.67% compared with the actual allocation scheme of the airport, and the distance traveled by passengers is reduced by a total of 4512 steps, while one stand is saved and the efficiency of stand use is increased by 31%, in addition to the reduction of airline cost by 300 RMB. In summary, the model constructed in the study has a high practical application value and is expected to be used for airport stand pre-allocation decision in the future.</p> </abstract>


2020 ◽  
Vol 26 (4) ◽  
pp. 174-184
Author(s):  
Thi Diem Chau Le ◽  
Duy Duc Nguyen ◽  
Judit Oláh ◽  
Miklós Pakurár

AbstractThis study describes a pickup and delivery vehicle routing problem, considering time windows in reality. The problem of tractor truck routes is formulated by a mixed integer programming model. Besides this, three algorithms - a guided local search, a tabu search, and simulated annealing - are proposed as solutions. The aims of our study are to optimize the number of internal tractor trucks used, and create optimal routes in order to minimize total logistics costs, including the fixed and variable costs of an internal vehicle group and the renting cost of external vehicles. Besides, our study also evaluates both the quality of solutions and the time to find optimal solutions to select the best suitable algorithm for the real problem mentioned above. A novel mathematical model is formulated by OR tools for Python. Compared to the current solution, our results reduced total costs by 18%, increased the proportion of orders completed by internal vehicles (84%), and the proportion of orders delivered on time (100%). Our study provides a mathematical model with time constraints and large job volumes for a complex distribution network in reality. The proposed mathematical model provides effective solutions for making decisions at logistics companies. Furthermore, our study emphasizes that simulated annealing is a more suitable algorithm than the two others for this vehicle routing problem.


Sign in / Sign up

Export Citation Format

Share Document