Mange Mite Infestation (Sarcoptes, Demodex, Psoroptes, and Chorioptes)

2021 ◽  
pp. 223-234
Author(s):  
Ahmed A. Gameel
Keyword(s):  
1996 ◽  
Vol 34 (2) ◽  
pp. 143 ◽  
Author(s):  
G S Park ◽  
J S Park ◽  
B K Cho ◽  
W K Lee ◽  
J H Cho

2005 ◽  
Vol 19 (3) ◽  
pp. 230-233 ◽  
Author(s):  
Teresa Y. Morishita ◽  
Grant Johnson ◽  
Galen Johnson ◽  
John Thilsted ◽  
Benjamas Promsopone ◽  
...  

1950 ◽  
Vol 43 (3) ◽  
pp. 397-397
Author(s):  
Donald L. Schuder

2021 ◽  
pp. 109607
Author(s):  
Rossella Panarese ◽  
Roberta Iatta ◽  
Riccardo Paolo Lia ◽  
Wilfried Lebon ◽  
Frederic Beugnet ◽  
...  

1979 ◽  
Vol 59 (4) ◽  
pp. 911-916 ◽  
Author(s):  
R. N. SINHA ◽  
N. D. G. WHITE ◽  
H. A. H. WALLACE ◽  
R. I. H. McKENZIE

The effects of various seed moisture contents in hulless (cv. Terra) and hulled oats (cv. Random) on susceptibility to mite infestation and on mycofloral growth and germination loss were studied at weekly intervals. Fat acidity values were determined for Terra oats only after 4 wk of storage. Moisture content-relative humidity adsorption and desorption curves were determined for Terra at 22 °C and at relative humidities of 35–100%. Terra oats, which had a higher level of Penicillium infection at 90–100% RH than Random oats, lost viability more rapidly than Random. Fat acidity values of Terra increased rapidly from 35 mg KOH/100 g of seed to 87–118 mg KOH/100 g of seed, only when seeds were stored at 90–100% RH. Terra offered a more favorable substrate for the multiplication of the mites Tyrophagus putrescentiae, Acarus farris, and Lepidoglyphus destructor than did Random. With the exception of susceptibility to mite infestation, safe storage criteria are similar for hulled and hulless oats at usual moisture contents.


1999 ◽  
Vol 22 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Geraldo Moretto ◽  
Leonidas João de Mello Jr.

Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44) than Italian bees (2.79 ± 0.65). This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.


2015 ◽  
Vol 15 (1-2) ◽  
pp. 16-25 ◽  
Author(s):  
Mohammad Shameem Al ◽  
Md. Mozammel Hoque ◽  
Mainuddin Ahmed ◽  
Md. Yasin

Parasitology ◽  
2018 ◽  
Vol 145 (12) ◽  
pp. 1633-1639 ◽  
Author(s):  
Beatrice T. Nganso ◽  
Ayuka T. Fombong ◽  
Abdullahi A. Yusuf ◽  
Christian W. W. Pirk ◽  
Charles Stuhl ◽  
...  

AbstractAlthough Varroa destructor is the most serious ecto-parasite to the honeybee, Apis mellifera L., some honeybee populations such as Apis mellifera scutellata in Kenya can survive mite infestations without treatment. Previously, we reported that grooming behaviour could be a potential tolerant mechanism expressed by this honeybee subspecies towards mite infestation. However, both hygienic and grooming behaviours could not explain the lower mite-infestation levels recorded in these colonies. Here, we investigated the involvement of other potential resistant mechanisms including suppression of mite reproduction in worker brood cells of A. m. scutellata to explain the low mite numbers in their colonies. High infertility rates (26–27%) and percentages of unmated female offspring (39–58%) as well as low fecundity (1.7–2.2, average offspring produced) were identified as key parameters that seem to interact with one another during different seasons to suppress mite reproduction in A. m. scutellata colonies. We also identified offspring mortality in both sexes and absence of male offspring as key factors accounting for the low numbers of mated daughter mites produced in A. m. scutellata colonies. These results suggest that reduced mite reproductive success could explain the slow mite population growth in A. m. scutellata colonies.


Sign in / Sign up

Export Citation Format

Share Document