scholarly journals Influence of Surface Irregularities on the Expected Boundary-Layer Transition Location on Hybrid Laminar Flow Control Wings

Author(s):  
Juan Alberto Franco Sumariva ◽  
Alexander Theiss ◽  
Stefan Hein
2005 ◽  
Vol 109 (1102) ◽  
pp. 639-644 ◽  
Author(s):  
G. Schrauf

AbstractAfter identifying the ecological and economic drivers for use of laminar flow technology, we outline the mechanisms of laminarturbulent boundary layer transition and review the status of natural laminar flow (NLF) and hybrid laminar flow control (HLFC). New ways to reduce the complexity of HLFC systems are presented, and the remaining steps to achieve technology readiness are discussed.


1987 ◽  
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

In this paper, foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-Layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydro­dynamic characteristics are very much dependent on location and mode of boundary-Layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is lea ding-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.


2016 ◽  
Vol 120 (1225) ◽  
pp. 391-414
Author(s):  
J.-P. Rosenblum

ABSTRACTIn France, the very first ideas on flow control were developed by Philippe Poisson-Quinton from the Office National d'Etudes et Recherches Aérospatiales (ONERA) in the 1950s. There was some renewal of this research topic in the early 1990s, first in the United States with scientists like Wygnanski and Gad-El Hak, and also in France at the initiative of Pierre Perrier from Dassault Aviation, who triggered a lot of research activities in this field both at ONERA and in the French National Centre for Scientific Research (CNRS) laboratories. The motivation was driven by the applications on Dassault Aviation military aircraft and Falcon business jets in order to contribute to the design, while facilitating performance optimisation and multi-disciplinary compromise. A few examples of flow control technologies, such as forebody vortex control, circulation control, flow separation control or boundary layer transition control using hybrid laminar flow control (HLFC), are presented to illustrate the applications and to explain the methodology used for the design of the flow control devices. The author also emphasises the current reaction of industry with respect to the integration of flow control technologies on an aircraft programme. The conclusion is related to the present status of the French research on this topic and to the next challenges to be addressed.


Author(s):  
Brian Barry ◽  
Simon J. Parke ◽  
Nicholas W. Bown ◽  
Hansgeorg Riedel ◽  
Martin Sitzmann

The achievement of large areas of laminar flow over aircraft engine nacelles offers significant savings in aircraft fuel consumption. Based upon current engine configurations nett sfc benefits of up to 2% are possible. In addition the engine nacelle is ideally suited to the early inclusion of laminar flow technology, being relatively self contained with the possibility of application to existing airframes. In September 1992 a European Consortium managed by Rolls-Royce including MTU and DLR began flight testing of a natural laminar flow nacelle. This programme was later extended by R-R and DLR to flight test a hybrid laminar flow nacelle featuring boundary layer suction and insect contamination protection. The tests evaluated the effects of flight and engine environment, boundary layer transition phenomena, suction system operation and insect contamination avoidance strategies. This paper describes the global conclusions from these flight tests which are a significant milestone leading to the future application of laminar flow technology to engine nacelles.


Author(s):  
Meelan Choudhari ◽  
Chau-Lyan Chang ◽  
Li Jiang

Laminar flow control (LFC) is one of the key enabling technologies for quiet and efficient supersonic aircraft. Recent work at Arizona State University (ASU) has led to a novel concept for passive LFC, which employs distributed leading edge roughness to limit the growth of naturally dominant crossflow instabilities in a swept-wing boundary layer. Predicated on nonlinear modification of the mean boundary-layer flow via controlled receptivity, the ASU concept requires a holistic prediction approach that accounts for all major stages within transition in an integrated manner. As a first step in developing an engineering methodology for the design and optimization of roughness-based supersonic LFC, this paper reports on canonical findings related to receptivity plus linear and nonlinear development of stationary crossflow instabilities on a Mach 2.4, 73° swept airfoil with a chord Reynolds number of 16.3 million.


1989 ◽  
Vol 33 (02) ◽  
pp. 145-155
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

Foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydrodynamic characteristics are very much dependent on location and mode of boundary-layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is leading-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.


Sign in / Sign up

Export Citation Format

Share Document