Self-regulation Approach for Setting Goals in Problem-Solving

Author(s):  
Alexander M. Yemelyanov ◽  
Inna S. Bedny
2020 ◽  
Vol 32 (4) ◽  
pp. 1055-1072 ◽  
Author(s):  
Tamara van Gog ◽  
Vincent Hoogerheide ◽  
Milou van Harsel

Abstract Problem-solving tasks form the backbone of STEM (science, technology, engineering, and mathematics) curricula. Yet, how to improve self-monitoring and self-regulation when learning to solve problems has received relatively little attention in the self-regulated learning literature (as compared with, for instance, learning lists of items or learning from expository texts). Here, we review research on fostering self-regulated learning of problem-solving tasks, in which mental effort plays an important role. First, we review research showing that having students engage in effortful, generative learning activities while learning to solve problems can provide them with cues that help them improve self-monitoring and self-regulation at an item level (i.e., determining whether or not a certain type of problem needs further study/practice). Second, we turn to self-monitoring and self-regulation at the task sequence level (i.e., determining what an appropriate next problem-solving task would be given the current level of understanding/performance). We review research showing that teaching students to regulate their learning process by taking into account not only their performance but also their invested mental effort on a prior task when selecting a new task improves self-regulated learning outcomes (i.e., performance on a knowledge test in the domain of the study). Important directions for future research on the role of mental effort in (improving) self-monitoring and self-regulation at the item and task selection levels are discussed after the respective sections.


Author(s):  
Katharine Clemmer

Loyola Marymount University (LMU) has developed a new approach to problem solving, Collaborative Solution Discovery (CSD), to help practitioners in a school system leverage their individual passions in a way that grows students’ positive math identity through mathematical thinking, problem solving, and self-regulation. By focusing on how students and teachers interact with each other in real-time in an ideal classroom, practitioners take ownership of a process to guide their students in growing their positive math identity and thus taking ownership of their own math learning. Practitioners measure progress along the way through metrics that are created, defined, used, and continually refined by themselves to attain their ideal math learning environment. The entire CSD process results in a system that owns ist improvement efforts—improvement efforts that are flexible, adaptable, and sustainable.


Author(s):  
Peter O’Connor

The Web provides unprecedented opportunities for Web site operators to implicitly and explicitly gather highly detailed personal data about site visitors, resulting in a real and pressing threat to privacy. Approaches to protecting such personal data differ greatly throughout the world. To generalize greatly, most countries follow one of two diametrically opposed philosophies—the self-regulation approach epitomized by the United States, or the comprehensive omnibus legislative approach mandated by the European Union. In practice, of course, the situation is not so black and white as most countries utilize elements of both approaches. This chapter explains the background and importance of protecting the privacy of personal data, contrasts the two major philosophical approaches to protection mentioned above, performs a comparative analysis of the current situation throughout the world, and highlights how the legislative approach is being adopted as the de facto standard throughout the world. The use of trust marks as an alternative to the self-regulation or legislative approach is also discussed, while the effectiveness of each of these efforts is also examined.


Author(s):  
Bracha Kramarski

This study examined the relative efficacies of two different metacognitive teaching methods – problem solving (M_PS) and sharing knowledge (M_SK). Seventy-two Israeli sixth-grade students engaged in online mathematical problem solving and were each supported using one of the two aforementioned methods. M_PS students used a problem-solving and feedback process based on the IMPROVE model (Kramarski & Mevarech, 2003). In contrast, M_SK participants were instructed to reflect and provide feedback on the solution without an explicit model. This study evaluated each method‘s impact on the students’ mathematical online problem solving. It also examined self-regulated learning (SRL) processes by assessing students‘ online feedback using a rubric scheme. Findings indicated that M_PS students outperformed the M_SK students in algebraic knowledge and mathematical reasoning, as well as on various measures of sharing cognitive and metacognitive feedback. The M_SK students outperformed the M_PS students on measures of sharing motivational and social feedback.


Sign in / Sign up

Export Citation Format

Share Document