Bottom Simulating Reflector in the Western Ross Sea, Antarctica

Author(s):  
Riccardo Geletti ◽  
Martina Busetti
2021 ◽  
pp. 1-13
Author(s):  
E.J. Chamberlain ◽  
A.J. Christ ◽  
R.W. Fulweiler

Abstract Ice-covered lakes in Antarctica preserve records of regional hydroclimate and harbour extreme ecosystems that may serve as terrestrial analogues for exobiotic environments. Here, we examine the impacts of hydroclimate and landscape on the formation history of Lake Eggers, a small ice-sealed lake, located in the coastal polar desert of McMurdo Sound, Antarctica (78°S). Using ground penetrating radar surveys and three lake ice cores we characterize the ice morphology and chemistry. Lake ice geochemistry indicates that Lake Eggers is fed primarily from local snowmelt that accreted onto the lake surface during runoff events. Radiocarbon ages of ice-encased algae suggest basal ice formed at least 735 ± 20 calibrated years before present (1215 C.E.). Persisting through the Late Holocene, Lake Eggers alternated between periods of ice accumulation and sublimation driven by regional climate variability in the western Ross Sea. For example, particulate organic matter displayed varying δ15N ratios with depth, corresponding to sea ice fluctuations in the western Ross Sea during the Late Holocene. These results suggest a strong climatic control on the hydrologic regime shifts shaping ice formation at Lake Eggers.


2015 ◽  
Vol 19 (4) ◽  
pp. 681-695 ◽  
Author(s):  
Mi Jung Lee ◽  
Jong Ik Lee ◽  
Tae Hoon Kim ◽  
Joohan Lee ◽  
Keisuke Nagao

2010 ◽  
Vol 22 (3) ◽  
pp. 243-254 ◽  
Author(s):  
Mario La Mesa ◽  
Barbara Catalano ◽  
Aniello Russo ◽  
Silvio Greco ◽  
Marino Vacchi ◽  
...  

AbstractThe Antarctic silverfishPleuragramma antarcticumBoulenger is the dominant fish species in the high Antarctic zone, playing a key role in the Ross Sea midwater shelf ecosystem. Unlike other notothenioids, it is holoplanktonic species, spending its entire life cycle in the water column. Early life stages ofP. antarcticumare generally found in the upper 200 m and their spatial distribution is largely affected by water masses and general circulation. To understand better the mechanisms involved in the geographical distribution of the Antarctic silverfish within the western Ross Sea, an analysis of abundance and distribution was carried out in relation to oceanographic conditions. Samples were collected in summer during the 1998, 2000 and 2004 Italian cruises, covering the majority of the western sector of the Ross Sea. Overall 127 stations were sampled using standard plankton nets for biological samples and CTD and XBT to record abiotic parameters. Although all surveys were in December–January, the yearly results differed in terms of relative abundance of larval developmental stages and of oceanographic characteristics. The 1997–98 samples were characterized by very low abundance overall and by the virtual absence of early larvae. In summers 1999–2000 and 2003–04 the abundance ofP. antarcticumwas one order of magnitude higher than in the earlier season. In 1999–2000 catches were mainly composed of pre-flexion larvae and late postlarvae, while in 2003–04 catches were made up of pre-flexion larvae and juveniles. In January 2000 the Ross Sea summer polynya was fully open as the pack ice was almost completely melted, whereas in January 1998 and 2004 the opening of the polynya was considerably delayed. As a consequence, a delay in phytoplankton blooms and a decrease in primary production were observed in the summer seasons 1998 and 2004 with respect to 2000. The spatial distribution of early life stages, that were confined to the continental shelf and shelf break of the Ross Sea, generally appeared to be positively influenced by transition zones (oceanographic fronts). In addition, most of catches were recorded on or in close proximity to the banks (Pennell, Mawson, Ross and Crary) that characterize the continental shelf of the Ross Sea. On the basis of present findings and literature data, a link between the general circulation in the western Ross Sea and the distribution pattern of the early life stages ofP. antarcticumhas been developed.


Hydrobiologia ◽  
2015 ◽  
Vol 761 (1) ◽  
pp. 249-259
Author(s):  
Mario La Mesa ◽  
Alberto Castelli ◽  
Joseph T. Eastman ◽  
Emilio Riginella

1991 ◽  
Vol 99 (1-2) ◽  
pp. 209-229 ◽  
Author(s):  
O.Hieke Merlin ◽  
G.Longo Salvador ◽  
L.Menegazzo Vitturi ◽  
M. Pistolato ◽  
G. Rampazzo

2021 ◽  
Author(s):  
Wolfgang Rack ◽  
Daniel Price ◽  
Christian Haas ◽  
Patricia J. Langhorne ◽  
Greg H. Leonard

<p>Sea ice cover is arguably the longest and best observed climate variable from space, with over four decades of highly reliable daily records of extent in both hemispheres. In Antarctica, a slight positive decadal trend in sea ice cover is driven by changes in the western Ross Sea, where a variation in weather patterns over the wider region forced a change in meridional winds. The distinguishing wind driven sea ice process in the western Ross Sea is the regular occurrence of the Ross Sea, McMurdo Sound, and Terra Nova Bay polynyas. Trends in sea ice volume and mass in this area unknown, because ice thickness and dynamics are particularly hard to measure.</p><p>Here we present the first comprehensive and direct assessment of large-scale sea-ice thickness distribution in the western Ross Sea. Using an airborne electromagnetic induction (AEM) ice thickness sensor towed by a fixed wing aircraft (Basler BT-67), we observed in November 2017 over a distance of 800 km significantly thicker ice than expected from thermodynamic growth alone. By means of time series of satellite images and wind data we relate the observed thickness distribution to satellite derived ice dynamics and wind data. Strong southerly winds with speeds of up to 25 ms<sup>-1</sup> in early October deformed the pack ice, which was surveyed more than a month later.</p><p>We found strongly deformed ice with a mean and maximum thickness of 2.0 and 15.6 m, respectively. Sea-ice thickness gradients are highest within 100-200 km of polynyas, where the mean thickness of the thickest 10% of ice is 7.6 m. From comparison with aerial photographs and satellite images we conclude that ice preferentially grows in deformational ridges; about 43% of the sea ice volume in the area between McMurdo Sound and Terra Nova Bay is concentrated in more than 3 m thick ridges which cover about 15% of the surveyed area. Overall, 80% of the ice was found to be heavily deformed and concentrated in ridges up to 11.8 m thick.</p><p>Our observations hold a link between wind driven ice dynamics and the ice mass exported from the western Ross Sea. The sea ice statistics highlighted in this contribution forms a basis for improved satellite derived mass balance assessments and the evaluation of sea ice simulations.</p>


Geology ◽  
2020 ◽  
Author(s):  
R.S. Jones ◽  
R.J. Whitmore ◽  
A.N. Mackintosh ◽  
K.P. Norton ◽  
S.R. Eaves ◽  
...  

Outlet glaciers drain the majority of ice flow in the Antarctic ice sheet. Theory and numerical models indicate that local bed topography can play a key role in modulating outlet glacier response to climate warming, potentially resulting in delayed, asynchronous, or enhanced retreat. However, the period of modern observations is too short to assess whether local or regional controls dominate ice sheet response on time scales that are critical for understanding ice sheet mass loss over this century and beyond. The recent geological past allows for insight into such centennial-scale ice sheet behavior. We present a cosmogenic surface-exposure chronology from Mawson Glacier, adjacent to a region of the Ross Sea that underwent dynamic marine-based ice sheet retreat following the Last Glacial Maximum. Our data record at least 220 m of abrupt ice thinning between 7.5 and 4.5 ka, followed by more gradual thinning until the last millennium. The timing, rates, and magnitudes of thinning at Mawson Glacier are remarkably similar to that documented 100 km to the south at Mackay Glacier. Together, both outlet glaciers demonstrate that abrupt deglaciation occurred across a broad region in the Mid-Holocene. This happened despite the complex bed topography of the western Ross Sea and implies an overarching external driver of retreat. When compared to regional sea-level and ocean-temperature changes, our data indicate that ocean warming most likely drove grounding-line retreat and ice drawdown, which then accelerated as a result of marine ice sheet instability.


2019 ◽  
Vol 132 (1-2) ◽  
pp. 31-47 ◽  
Author(s):  
Andrew J. Christ ◽  
Paul R. Bierman

AbstractDuring the Last Glacial Maximum (LGM), a grounded ice sheet filled the Ross Sea Embayment in Antarctica and deposited glacial sediments on volcanic islands and peninsulas in McMurdo Sound and coastal regions of the Transantarctic Mountains. The flow geometry and retreat history of this ice are debated, with contrasting views yielding divergent implications for the interaction between and stability of the East and West Antarctic ice sheets during late Quaternary time. Here, we present terrestrial geomorphologic evidence and reconstruct former ice-marginal environments, ice sheet elevations, and ice-flow directions in McMurdo Sound. Fossil algae in ice-marginal sediments provide a coherent radiocarbon chronology of maximum ice extent and deglaciation. We integrate these data with marine records to reconstruct grounded ice dynamics in McMurdo Sound and the western Ross Sea. The combined data set suggests ice flow toward the Transantarctic Mountains in McMurdo Sound during peak glaciation, with thick, grounded ice at or near its maximum position between 19.6 and 12.3 ka. Persistent grounded ice in McMurdo Sound and across the western Ross Sea after Meltwater Pulse 1a (14.0–14.5 ka) suggests that this sector of Antarctica did not significantly contribute to this rapid sea-level rise event. Our data show no significant advance of locally derived ice from the Transantarctic Mountains into McMurdo Sound during the local LGM.


Sign in / Sign up

Export Citation Format

Share Document