Intelligent Sensors for Intelligent Systems: Fault Tolerant Measurement Methods for Intelligent Strain Gauge Pressure Sensors

Author(s):  
Thomas Barker ◽  
Giles Tewkesbury ◽  
David Sanders ◽  
Ian Rogers
Metrologiya ◽  
2020 ◽  
pp. 48-62
Author(s):  
Vladimir A. Larionov

Existing methods of metrological self-monitoring of measuring sensors for temperature and pressure of technological industries are considered. The analysis of methods of metrological self-checking of strain gauge pressure sensors is carried out. Method is proposed based on measuring the supply voltage and voltage on the measuring diagonal of the bridge. The temperature of the strain gauge bridge is determined using a semiconductor thermistor installed near the bridge. This allows you to adjust the measured value of the total resistance of the bridge from the temperature of the bridge. With aging and exposure to external conditions, a change in the overall resistance of the bridge can be used to judge the error of the sensor. An experimental sample of the sensor was made. The failure of the strain gage bridge is simulated by parallel connection of an additional resistor to one of the shoulders of the bridge. Experimental studies have shown that modern technical means make it possible to assess the effect of changes in the total bridge resistance on the sensor error.


2015 ◽  
Vol 1795 ◽  
pp. 27-33 ◽  
Author(s):  
Alex Keller ◽  
Dominik Benz ◽  
Marc in het Panhuis

ABSTRACTThe development of highly conductive, robust edible hydrogels was investigated using a combination of the biopolymers gellan gum and gelatin, a common salt (NaCl) and plant-derived cross-linker (genipin). Robust strain gauge/pressure sensors were developed using edible materials to demonstrate the potential of these hydrogels. The hydrogels exhibited gauge factor and pressure sensitivity values of 7.6 ± 0.1 and 400 ± 7 μΩ/Pa for loads up to 3 kPa, respectively. Furthermore, these devices were able to operate under larger loads with gauge factor and pressure sensitivity values of 0.308 ± 0.002 and 7.17 ± 0.05 μΩ/Pa, respectively, for loads between 9 kPa and 280 kPa.


1993 ◽  
Vol 36 (5) ◽  
pp. 545-547
Author(s):  
A. F. Arkhipenko ◽  
S. G. Grigor'yan ◽  
V. T. Stadnik ◽  
E. I. Fandeev

2019 ◽  
Vol 139 (4) ◽  
pp. 63-68
Author(s):  
Hiroshi Nakano ◽  
Masahiro Matsumoto ◽  
Yasuo Onose ◽  
Kazuhiro Ohta

Author(s):  
Sanjeevi Chitikeshi ◽  
Ajay Mahajan ◽  
Pavan Bandhil ◽  
Lucas Utterbach ◽  
Fernanado Figueroa

This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).


Sensor Review ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 248-258
Author(s):  
Gobi K. ◽  
Kannapiran B. ◽  
Devaraj D. ◽  
Valarmathi K.

Purpose The conventional strain gauge type pressure sensor suffers in static testing of engines due to the contact transduction method. This paper aims to focus on the concept of non-contact transduction-based pressure sensor using eddy current displacement sensing coil (ECDS) to overcome the temperature limitations of the strain gauge type pressure sensor. This paper includes the fabrication of prototypes of the proposed pressure sensor and its performance evaluation by static calibration. The fabricated pressure sensor is proposed to measure pressure in static test environment for a short period in the order of few seconds. The limitations of the fabricated pressure sensor related to temperature problems are highlighted and the suitable design changes are recommended to aid the future design. Design/methodology/approach The design of ECDS-based pressure sensor is aimed to provide non-contact transduction to overcome the limitations of the strain gauge type of pressure sensor. The ECDS is designed and fabricated with two configurations to measure deflection of the diaphragm corresponding to the applied pressure. The fabricated ECDS is calibrated using a standard micro meter to ensure transduction within limits. The fabricated prototypes of pressure sensors are calibrated using dead weight tester, and the calibration results are analyzed to select the best configuration. The proposed pressure sensor is tested at different temperatures, and the test results are analyzed to provide recommendations to overcome the shortcomings. Findings The performance of the different configurations of the pressure sensor using ECDS is evaluated using the calibration data. The analysis of the calibration results indicates that the pressure sensor using ECDS (coil-B) with the diaphragm as target is the best configuration. The accuracy of the fabricated pressure sensor with best configuration is ±2.8 per cent and the full scale (FS) output is 3.8 KHz. The designed non-contact transduction method extends the operating temperature of the pressure sensor up to 150°C with the specified accuracy for the short period. Originality/value Most studies of eddy current sensing coil focus on the displacement and position measurement but not on the pressure measurement. This paper is concerned with the design of the pressure sensor using ECDS to realize the non-contact transduction to overcome the limitations of strain gauge type pressure sensors and evaluation of the fabricated prototypes. It is shown that the accuracy of the proposed pressure sensor is not affected by the high temperature for the short period due to non-contact transduction using ECDS.


Sign in / Sign up

Export Citation Format

Share Document