Effect of Dust Accumulation on the Power Production of the PV Module at Different Heights: A Case Study

2021 ◽  
pp. 47-57
Author(s):  
Rajan Kumar ◽  
Sachin Sharma ◽  
Akshu Gupta ◽  
Indar Singh ◽  
Paras Chaudhary ◽  
...  
2021 ◽  
Vol 44 ◽  
pp. 101015
Author(s):  
Ze Wu ◽  
Suying Yan ◽  
Tingzhen Ming ◽  
Xiaoyan Zhao ◽  
Na Zhang
Keyword(s):  

2020 ◽  
Vol 11 ◽  
pp. 1 ◽  
Author(s):  
Christine Abdel Nour ◽  
Anne Migan-Dubois ◽  
Jordi Badosa ◽  
Vincent Bourdin ◽  
Claude Marchand ◽  
...  

In order to design, manage and optimize the performance of a photovoltaic (PV) installation and establish a precise power production estimation, irradiance on the plane of array (POA) in relation with the geometrical characteristics of the PV modules installation occupies a high importance. This study focuses on the development of an estimation model of the POA irradiance for a photovoltaic installation equipped with flat reflectors. The model includes solar irradiance components (global, direct and diffuse), geometrical parameters and geographical characteristics of the PV installation. Experimental validations have been performed with measurements taken at the SIRTA Observatory (48.7°N, 2.2°E) in Palaiseau, France, for the period starting from June 2017 to June 2018. Results show mean absolute errors (relative to the mean) of 6% and 7% for an installation without and with planar reflector. Finally, we present several geometrical optimization strategies of the PV-reflector installation relying on two major variables: the reflector's length (LR) compared to the length of the PV module (LPV) and the tilt angle adjustment frequency (monthly, seasonally, fixed) of the system (for both PV and the reflectors). The objective of such optimization is to discuss about a reasonable configuration to achieve a maximum POA irradiance. Results show that the length of the mirrors highly affects the efficiency and performances of the PV-Reflector system and the annual gain increased from 8.5% to 28.7% when going from LR = LPV/2 to LR = 2 × LPV compared to a monthly-optimized installation without mirrors. As for the adjustment frequency, we show that a monthly-varied architecture is the most advantageous option with a 28.2 and 31.6% increasing in annual gain compared to a seasonal varied or fixed ones, respectively.


2019 ◽  
Vol 11 (22) ◽  
pp. 6234 ◽  
Author(s):  
Hyeonwook Park ◽  
Sungho Chang ◽  
Sanghwan Park ◽  
Woo Kyoung Kim

The outdoor performance of n-type bifacial Si photovoltaic (PV) modules and string systems was evaluated for two different albedo (ground reflection) conditions, i.e., 21% and 79%. Both monofacial and bifacial silicon PV modules were prepared using n-type bifacial Si passivated emitter rear totally diffused cells with multi-wire busbar incorporated with a white and transparent back-sheet, respectively. In the first set of tests, the power production of the bifacial PV string system was compared with the monofacial PV string system installed on a grey concrete floor with an albedo of ~21% for approximately one year (June 2016–May 2017). In the second test, the gain of the bifacial PV string system installed on the white membrane floor with an albedo of ~79% was evaluated for approximately ten months (November 2016–August 2017). During the second test, the power production by an equivalent monofacial module installed on a horizontal solar tracker was also monitored. The gain was estimated by comparing the energy yield of the bifacial PV module with that of the monofacial module. For the 1.5 kW PV string systems with a 30° tilt angle to the south and 21% ground albedo, the year-wide average bifacial gain was determined to be 10.5%. An increase of the ground albedo to 79% improved the bifacial gain to 33.3%. During the same period, the horizontal single-axis tracker yielded an energy gain of 15.8%.


2019 ◽  
Vol 9 (3) ◽  
pp. 431 ◽  
Author(s):  
Nikolaos Simisiroglou ◽  
Heracles Polatidis ◽  
Stefan Ivanell

The aim of the present study is to perform a comparative analysis of two actuator disc methods (ACD) and two analytical wake models for wind farm power production assessment. To do so, wind turbine power production data from the Lillgrund offshore wind farm in Sweden is used. The measured power production for individual wind turbines is compared with results from simulations, done in the WindSim software, using two ACD methods (ACD (2008) and ACD (2016)) and two analytical wake models widely used within the wind industry (Jensen and Larsen wake models). It was found that the ACD (2016) method and the Larsen model outperform the other method and model in most cases. Furthermore, results from the ACD (2016) method show a clear improvement in the estimated power production in comparison to the ACD (2008) method. The Jensen method seems to overestimate the power deficit for all cases. The ACD (2016) method, despite its simplicity, can capture the power production within the given error margin although it tends to underestimate the power deficit.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2103 ◽  
Author(s):  
Sherine El Baradei ◽  
Mai Al Sadeq

Both energy and availability of water with good quality are essential for the well-being of humans. Thus, it is very important to study the parameters that would affect water quality, so as to come up with mitigation measures if water quality would be at risk or negatively affected. Moreover, it is very important to always search for new energy resources, especially if they are renewable. This research study is concerned with studying solar canals and their effect on evaporation and water quality variables of canals covered by solar cells, as well as the effect on power production. Both a mathematical model and an optimization study were done, in order to determine the previously mentioned effects, and thus, to determine the most favorable covering percentage of the case study canal’s area that would lead to minimum evaporation volumes, maximum power, and yet preserving and meeting the standards of the water quality variables of the covered waterway. Water quality variables that were investigated are dissolved oxygen concentration, algae, nutrients, and pH of the water. It was found that, between 33% and 50% covering of the canal, the optimum conditions will be met.


2017 ◽  
Vol 128 ◽  
pp. 24-31 ◽  
Author(s):  
Karim Menoufi ◽  
Hamdy F.M. Farghal ◽  
Ahmed A. Farghali ◽  
Mohamed H. Khedr

Sign in / Sign up

Export Citation Format

Share Document