Energy Storage Devices and Front-End Converter Topologies for Electric Vehicle Applications

2021 ◽  
pp. 119-135
Author(s):  
Sumukh Surya ◽  
Sheldon S. Williamson
2021 ◽  
Vol 2089 (1) ◽  
pp. 012041
Author(s):  
Jarapala Ramesh Babu ◽  
Manas Ranjan Nayak ◽  
B. Mangu

Abstract Due to the rapid increase of environmental pollution caused by automobiles. To decrease pollution and to save our resources, there is an alternator to use an electric vehicle instead of a gasoline engine. The main drawback of a gasoline engine of compared to the electric vehicle can polluter noise efficiency durability. When it comes to durability, efficiency, and acceleration capabilities of electric vehicles, they are more impressive. The electric vehicles involve HEVs and BEVs. Generally, ultra-capacitor, solar Photovoltaic (PV) system, batters, regenerative braking systems and flywheel are utilized in HEVs as energy storage devices. All energy storage devices are linked to this distinct dc-dc converter scheme for raising input sources’ voltage. In past few decades, most HEVs have incorporated multi-input converters in order to enhance their reliability and efficiency. There are several distinct multi-input dc-dc converter schemas utilized in HEVs. This research discusses their current and future trends as well as energy storage devices.


2020 ◽  
Vol 102 (4) ◽  
pp. 2011-2023 ◽  
Author(s):  
Rodnei Regis de Melo ◽  
Fernando Lessa Tofoli ◽  
Sergio Daher ◽  
Fernando Luiz Marcelo Antunes

2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Author(s):  
Dhanasekar Kesavan ◽  
Vimal Kumar Mariappan ◽  
Karthikeyan Krishnamoorthy ◽  
Sang-Jae Kim

In this study, we report a facile carbothermal method for the preparation of boron-oxy-carbide (BOC) nanostructures and explore their properties towards electrochemical energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document