Development of Convolutional Neural Network Architecture for Detecting Dangerous Goods for X-ray Aviation Security in Artificial Intelligence

2021 ◽  
pp. 609-615
Author(s):  
Woong Kim ◽  
Chulung Lee
2019 ◽  
Vol 5 (8) ◽  
pp. eaaw7416 ◽  
Author(s):  
Z. Sabetsarvestani ◽  
B. Sober ◽  
C. Higgitt ◽  
I. Daubechies ◽  
M. R. D. Rodrigues

X-ray images of polyptych wings, or other artworks painted on both sides of their support, contain in one image content from both paintings, making them difficult for experts to “read.” To improve the utility of these x-ray images in studying these artworks, it is desirable to separate the content into two images, each pertaining to only one side. This is a difficult task for which previous approaches have been only partially successful. Deep neural network algorithms have recently achieved remarkable progress in a wide range of image analysis and other challenging tasks. We, therefore, propose a new self-supervised approach to this x-ray separation, leveraging an available convolutional neural network architecture; results obtained for details from the Adam and Eve panels of the Ghent Altarpiece spectacularly improve on previous attempts.


2021 ◽  
Vol 11 (15) ◽  
pp. 6845
Author(s):  
Abu Sayeed ◽  
Jungpil Shin ◽  
Md. Al Mehedi Hasan ◽  
Azmain Yakin Srizon ◽  
Md. Mehedi Hasan

As it is the seventh most-spoken language and fifth most-spoken native language in the world, the domain of Bengali handwritten character recognition has fascinated researchers for decades. Although other popular languages i.e., English, Chinese, Hindi, Spanish, etc. have received many contributions in the area of handwritten character recognition, Bengali has not received many noteworthy contributions in this domain because of the complex curvatures and similar writing fashions of Bengali characters. Previously, studies were conducted by using different approaches based on traditional learning, and deep learning. In this research, we proposed a low-cost novel convolutional neural network architecture for the recognition of Bengali characters with only 2.24 to 2.43 million parameters based on the number of output classes. We considered 8 different formations of CMATERdb datasets based on previous studies for the training phase. With experimental analysis, we showed that our proposed system outperformed previous works by a noteworthy margin for all 8 datasets. Moreover, we tested our trained models on other available Bengali characters datasets such as Ekush, BanglaLekha, and NumtaDB datasets. Our proposed architecture achieved 96–99% overall accuracies for these datasets as well. We believe our contributions will be beneficial for developing an automated high-performance recognition tool for Bengali handwritten characters.


Sign in / Sign up

Export Citation Format

Share Document