Impact of the Chicxulub Asteroid: Potential Implications on Phyotoplankton and Anammox Bacteria

Author(s):  
Noel Perez ◽  
Osmel Martin ◽  
Rolando Cardenas Ortiz ◽  
Yoel Sanchez Alvarez
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul M. Magyar ◽  
Damian Hausherr ◽  
Robert Niederdorfer ◽  
Nicolas Stöcklin ◽  
Jing Wei ◽  
...  

AbstractAnaerobic ammonium oxidation (anammox) plays an important role in aquatic systems as a sink of bioavailable nitrogen (N), and in engineered processes by removing ammonium from wastewater. The isotope effects anammox imparts in the N isotope signatures (15N/14N) of ammonium, nitrite, and nitrate can be used to estimate its role in environmental settings, to describe physiological and ecological variations in the anammox process, and possibly to optimize anammox-based wastewater treatment. We measured the stable N-isotope composition of ammonium, nitrite, and nitrate in wastewater cultivations of anammox bacteria. We find that the N isotope enrichment factor 15ε for the reduction of nitrite to N2 is consistent across all experimental conditions (13.5‰ ± 3.7‰), suggesting it reflects the composition of the anammox bacteria community. Values of 15ε for the oxidation of nitrite to nitrate (inverse isotope effect, − 16 to − 43‰) and for the reduction of ammonium to N2 (normal isotope effect, 19–32‰) are more variable, and likely controlled by experimental conditions. We argue that the variations in the isotope effects can be tied to the metabolism and physiology of anammox bacteria, and that the broad range of isotope effects observed for anammox introduces complications for analyzing N-isotope mass balances in natural systems.


2019 ◽  
Vol 142 ◽  
pp. 227-234 ◽  
Author(s):  
Jiapeng Wu ◽  
Yiguo Hong ◽  
Jiaqi Ye ◽  
Yiben Li ◽  
Xiaohan Liu ◽  
...  

2016 ◽  
Vol 75 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Takahiro Watari ◽  
Trung Cuong Mai ◽  
Daisuke Tanikawa ◽  
Yuga Hirakata ◽  
Masashi Hatamoto ◽  
...  

Conventional aerated tank technology is widely applied for post treatment of natural rubber processing wastewater in Southeast Asia; however, a long hydraulic retention time (HRT) is required and the effluent standards are exceeded. In this study, a downflow hanging sponge (DHS) reactor was installed as post treatment of anaerobic tank effluent in a natural rubber factory in South Vietnam and the process performance was evaluated. The DHS reactor demonstrated removal efficiencies of 64.2 ± 7.5% and 55.3 ± 19.2% for total chemical oxygen demand (COD) and total nitrogen, respectively, with an organic loading rate of 0.97 ± 0.03 kg-COD m−3 day−1 and a nitrogen loading rate of 0.57 ± 0.21 kg-N m−3 day−1. 16S rRNA gene sequencing analysis of the sludge retained in the DHS also corresponded to the result of reactor performance, and both nitrifying and denitrifying bacteria were detected in the sponge carrier. In addition, anammox bacteria was found in the retained sludge. The DHS reactor reduced the HRT of 30 days to 4.8 h compared with the existing algal tank. This result indicates that the DHS reactor could be an appropriate post treatment for the existing anaerobic tank for natural rubber processing wastewater treatment.


2010 ◽  
Vol 61 (3) ◽  
pp. 737-743 ◽  
Author(s):  
J. C. Araujo ◽  
M. M. S. Correa ◽  
E. C. Silva ◽  
A. P. Campos ◽  
V. M. Godinho ◽  
...  

This work applied PCR amplification method and Fluorescence in situ hybridisation (FISH) with primers and probes specific for the anammox organisms and aerobic ammonia-oxidising β-Proteobacteria in order to detect these groups in different samples from a wastewater treatment system comprised by UASB reactor and three polishing (maturation) ponds in series. Seven primer pairs were used in order to detect Anammox bacteria. Positive results were obtained with three of them, suggesting that Anammox could be present in polishing pond sediments. However, Anammox bacteria were not detected by FISH, indicating that they were not present in sediment samples, or they could be present but below FISH detection limit. Aerobic ammonia- and nitrite-oxidising bacteria were verified in water column samples through Most Probable Number (MPN) analysis, but they were not detected in sediment samples by FISH. Ammonia removal efficiencies occurred systematically along the ponds (24, 32, and 34% for polishing pond 1, 2, and 3, respectively) but the major reaction responsible for this removal is still unclear. Some nitrification might have occurred in water samples because some nitrifying bacteria were present. Also Anammox reaction might have occurred because Anammox genes were detected in the sediments, but probably this reaction was too low to be noticed. It is important also to consider that some of the ammonia removal observed might be related to NH3 stripping, associated with the pH increase resulting from the intensive photosynthetic activity in the ponds (mechanism under investigation). Therefore, it can be concluded that more than one mechanism (or reaction) might be involved in the ammonia removal in the polishing ponds investigated in this study.


2004 ◽  
Vol 233 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Laura A. Niftrik ◽  
John A. Fuerst ◽  
Jaap S.Sinninghe Damsté ◽  
J.Gijs Kuenen ◽  
Mike S.M. Jetten ◽  
...  
Keyword(s):  

2012 ◽  
Vol 66 (2) ◽  
pp. 451-456 ◽  
Author(s):  
Kosuke Matsunaga ◽  
Tomonori Kindaichi ◽  
Noriatsu Ozaki ◽  
Akiyoshi Ohashi ◽  
Yoshihito Nakahara ◽  
...  

In up-flow anammox reactors, one of the contributing factors to biomass wash-out is the adherence of nitrogen gas produced by the anammox reaction to biomass. In this study, we operated an up-flow anammox reactor equipped with a degassing membrane to minimize the biomass wash-out from the reactor by separating the produced gas from the biomass. In addition, both the effect of degassing on the anammox reactor performance and the durability of the membrane submerged in the anammox reactor were investigated. The results show that the use of the degassing membrane in the anammox reactor could (1) improve the biomass retention ability (by separating the produced gas from the biomass), and (2) increase the component ratio of anammox bacteria in the reactor. In addition, degassing could reduce the N2O emission produced in the reactor (for the gas selectivity of the degassing membrane). No membrane fouling was observed even after 2 months of operation without washing, indicating an advantage to the use of the degassing membrane.


Sign in / Sign up

Export Citation Format

Share Document