Variation of Acoustic Properties with Material Parameters in Layered Nanocomposites

Author(s):  
S. Cojocaru
Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 314
Author(s):  
Krzysztof Nering ◽  
Alicja Kowalska-Koczwara

This paper is aimed at investigating the use of polyurethane mats, usually used as ballast mats, for residential building purposes. Ballast mats have features that may improve the vibroacoustic comfort in residential rooms. Their strength is certainly an advantage, along with vibration and acoustic insulation. However, the problem that an engineer has to deal with, for example in modeling these types of mats, is a limited knowledge of the material’s vibroacoustic parameters. Knowledge of these may be useful for residential buildings. This paper presents measurements of the vibroacoustic parameters of polyurethane mats, together with a suitable methodology and some results and analysis. The two main material parameters responsible for vibroacoustic protection were measured: the dynamic stiffness, which is related to the acoustic properties of the material, and the critical damping coefficient, which is obviously responsible for damping. The measurement methodology is clearly described. A total of five polyurethane materials with different densities were tested. It was possible to identify a relationship between the material density and the vibroacoustic parameters, which could offer an indication of which material to use, depending on the stimulus affecting a human in a given location.


1988 ◽  
Vol 16 ◽  
pp. 31-39
Author(s):  
Bethann Moffet ◽  
Rebekah Pindzola
Keyword(s):  

1994 ◽  
Vol 04 (C5) ◽  
pp. C5-705-C5-708
Author(s):  
V. PREOBRAZHENSKY ◽  
I. DUBENKO ◽  
N. ECONOMOV ◽  
A. ZAIKIN

2011 ◽  
Vol 4 (7) ◽  
pp. 75-78
Author(s):  
Y. K. Meshram Y. K. Meshram ◽  
◽  
K.N.Sonune K.N.Sonune ◽  
Rohinee R Dharamkar

2014 ◽  
Vol 2014 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Sanjay Srivastava ◽  
◽  
Nitu Yana ◽  
A.K. Gupta ◽  
Y. Srivastava ◽  
...  
Keyword(s):  

2008 ◽  
Vol 36 (1) ◽  
pp. 63-79 ◽  
Author(s):  
L. Nasdala ◽  
Y. Wei ◽  
H. Rothert ◽  
M. Kaliske

Abstract It is a challenging task in the design of automobile tires to predict lifetime and performance on the basis of numerical simulations. Several factors have to be taken into account to correctly estimate the aging behavior. This paper focuses on oxygen reaction processes which, apart from mechanical and thermal aspects, effect the tire durability. The material parameters needed to describe the temperature-dependent oxygen diffusion and reaction processes are derived by means of the time–temperature–superposition principle from modulus profiling tests. These experiments are designed to examine the diffusion-limited oxidation (DLO) effect which occurs when accelerated aging tests are performed. For the cord-reinforced rubber composites, homogenization techniques are adopted to obtain effective material parameters (diffusivities and reaction constants). The selection and arrangement of rubber components influence the temperature distribution and the oxygen penetration depth which impact tire durability. The goal of this paper is to establish a finite element analysis based criterion to predict lifetime with respect to oxidative aging. The finite element analysis is carried out in three stages. First the heat generation rate distribution is calculated using a viscoelastic material model. Then the temperature distribution can be determined. In the third step we evaluate the oxygen distribution or rather the oxygen consumption rate, which is a measure for the tire lifetime. Thus, the aging behavior of different kinds of tires can be compared. Numerical examples show how diffusivities, reaction coefficients, and temperature influence the durability of different tire parts. It is found that due to the DLO effect, some interior parts may age slower even if the temperature is increased.


Sign in / Sign up

Export Citation Format

Share Document