Critical Buckling Load Evaluation of Functionally Graded Material Plate Using Gaussian Process Regression

Author(s):  
Huan Thanh Duong ◽  
Hieu Chi Phan ◽  
Tien-Thinh Le
Author(s):  
LV Kurpa ◽  
TV Shmatko

The purpose of the paper is to study stability and free vibrations of laminated plates and shallow shells composed of functionally graded materials. The approach proposed incorporates the Ritz method and the R-functions theory. It is assumed that the shell consists of three layers and is loaded in the middle plane. The both cases of uniform as well as non-uniform load are possible. The power-law distribution in terms of volume fractions is applied to get effective material properties for the layers. These properties are calculated for different arrangements and thicknesses of the layers by the analytical formulae obtained in the paper. The mathematical formulation is carried out in framework of the first-order shear deformation theory. The proposed approach consists of two steps. The first step is to define the pre-buckling state by solving the respective elasticity problem. The critical buckling load and frequencies of functionally graded material shallow shells are determined in the second step. The highlight of the method proposed is that it can be used for vibration and buckling analysis of plates and shallow shells of complex shape. The numerical results for frequencies and buckling load of plates and shallow shells of complex shape and different curvatures are presented to demonstrate the potential of the method developed. Different functionally graded material plates and shallow shells composed of a mixture of metal and ceramics are studied. The effects of the power law index, boundary conditions, thickness of the core, and face sheet layers on the fundamental frequencies and critical loads are discussed in this paper. The main advantage of the method is that it provides an analytical representation of the unknown solution, which is important when solving nonlinear problems.


2016 ◽  
Vol 52 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Amlan Paul ◽  
Debabrata Das

In the present work, the non-linear post-buckling load–deflection behavior of tapered functionally graded material beam is studied for different in-plane thermal loadings. Two different thermal loadings are considered. The first one is due to the uniform temperature rise and the second one is due to the steady-state heat conduction across the beam thickness leading to non-uniform temperature rise. The governing equations are derived using the principle of minimum total potential energy employing Timoshenko beam theory. The solution is obtained by approximating the displacement fields following Ritz method. Geometric non-linearity for large post-buckling behavior is considered using von Kármán type non-linear strain-displacement relationship. Stainless steel/silicon nitride functionally graded material beam is considered with temperature-dependent material properties. The validation of the present work is successfully performed using finite element software ANSYS and using the available result in the literature. The post-buckling load–deflection behavior in non-dimensional plane is presented for different taperness parameters and also for different volume fraction indices. Normalized transverse deflection fields are presented showing the shift of the point of maximum deflection for various deflection levels. The results are new of its kind and establish benchmark for studying non-linear thermo-mechanical behavior of tapered functionally graded material beam.


Author(s):  
M H Naei ◽  
A Masoumi ◽  
A Shamekhi

The current study presents the buckling analysis of radially-loaded circular plate with variable thickness made of functionally graded material. The boundary conditions of the plate is either simply supported or clamped. The stability equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander's non-linear strain-displacement relation for thin plates. The finite-element method is used to determine the critical buckling load. The results obtained show good agreement with known analytical and numerical data. The effects of thickness variation and Poisson's ratio are investigated by calculating the buckling load. These effects are found not to be the same for simply supported and clamped plates.


2016 ◽  
Vol 58 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Noha Fouda

Sign in / Sign up

Export Citation Format

Share Document