Structural integrity and mechanical properties of the functionally graded material based on 316L/IN718 processed by DED technology

2021 ◽  
Vol 811 ◽  
pp. 141038
Author(s):  
Daniel Melzer ◽  
Jan Džugan ◽  
Martina Koukolíková ◽  
Sylwia Rzepa ◽  
Jaroslav Vavřík
1999 ◽  
Vol 49 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Yasuyoshi FUKUI ◽  
Hiroshi OKADA ◽  
Noriyoshi KUMAZAWA ◽  
Yoshimi WATANABE ◽  
Noboru YAMANAKA ◽  
...  

2017 ◽  
Vol 21 (3) ◽  
pp. 895-916 ◽  
Author(s):  
Sid Ahmed Belalia

In this paper, the geometrically nonlinear formulation based on von Karman’s assumptions is employed to study the large amplitude free vibrations of functionally graded materials sandwich plates. The functionally graded material sandwich plate is made up of two layers of power-law functionally graded material face sheet and one layer of ceramic homogeneous core. A hierarchical finite element is employed to define the model, taking into account the effects of the transverse shear deformation and the rotatory inertia. The equations of motion for the nonlinear vibration of the functionally graded material sandwich plates are obtained using Lagrange’s equations. Employing the harmonic balance method, the equations of motion are converted from time domain to frequency domain and then solved iteratively using the linearized updated mode method. Results for linear and nonlinear frequency parameters of the simply supported functionally graded material sandwich plates are computed and compared with the published values, and an excellent agreement was found. The influence of the mechanical properties of the functionally graded material, thickness ratio of FGM layers, and volume fraction exponent on the backbone curves and on the nonlinear frequency parameters are investigated. The effects of the material properties of two different types of ceramics on the large amplitude vibration behaviors of the functionally graded material sandwich plates is also presented and discussed for the first time.


2020 ◽  
Vol 10 (11) ◽  
pp. 3908 ◽  
Author(s):  
Ayse Basmaci ◽  
Seckin Filiz ◽  
Mümin Şahin

In recent years, with the development of welding methods, using these methods in manufacturing industry and in advanced engineering has become more popular. In this study, mechanical properties of rods obtained by friction welding and electric arc welding are compared. Hence, three specimens with different material properties are manufactured, two of which are welded by friction welding and one of which is welded by electric arc welding. These three specimens are adapted to the ASTM E8-04 standard with the help of a universal lathe. Moreover, the tensile stress values and the elasticity modulus of all these specimens are obtained as a result of tensile tests. Accordingly, the effects of the type of welding and material properties used in manufacturing on the mechanical behavior of the specimens are examined. In addition, specimens taken from the cracked surfaces of the pieces broken from the specimens as a result of the tensile test are examined with SEM (scanning electron microscopy). These examinations reveal the microstructure of the specimens. The elemental distribution data obtained as a result of examinations with SEM and the mechanical property data obtained as a result of tensile tests support each other. Furthermore, effects of a heat affected zone (HAZ) on the mechanical properties of the rod are investigated as a functionally graded material.


2008 ◽  
Vol 368-372 ◽  
pp. 1823-1824 ◽  
Author(s):  
Xin He ◽  
Hai Yan Du ◽  
Wei Wang ◽  
Wei Jing ◽  
Chang Liu

TZP/SUS304 functionally graded material (FGM) was developed by slip casting. Microscopic observations demonstrated that the chemical composition and microstructure of TZP/SUS FGM distributed gradually in stepwise way, eliminating the macroscopic ceramic/metal interface occurred in traditional ceramic/metal joint. Each interface of layers connected well without evident defects, and the mechanical properties of TZP/SUS system strongly depended on constitutional variation.


Sign in / Sign up

Export Citation Format

Share Document