The Advancement of Aluminum Metal Matrix Composite Reinforced with Silicon Carbide Particles (Al-6061/SiCp): A Review

Author(s):  
Fetene Teshome Teferi ◽  
Kishor Purushottam Kolhe ◽  
Assefa Asmare Tsegaw ◽  
Tafesse G. Borena ◽  
Muralidhar Avvari
Author(s):  
Masoud Saberi ◽  
Seyed Ali Niknam ◽  
Ramin Hashemi

Metal matrix composite is made of non-metallic reinforcements (usually ceramic) in metal matrices that are widely used in various industries, including aerospace and automotive. Two main components of metal matrix composite are the matrix (base metal) and the reinforcing particles that tend to increase the hardness of the workpart. The production and machining of such materials are hard and costly. However, due to their excellent mechanical properties such as high strength to weight ratio, high hardness and rigidity, corrosion resistance, abrasion resistance, and low thermal coefficient, their applications are still growing in various aspects. One major division of metal matrix composite is aluminum metal matrix composite with ceramics particulate reinforcement such as silicon carbide and alumina. According to review of literature, a low volume of information was found in terms of machinability of specific grades of aluminum composite (A356-10% silicon carbide) under various lubrication modes. Therefore, in the course of this study, several blocks of aluminum metal matrix composite (A356) reinforced with 10% silicon carbide elements were used under dry, minimum quantity lubrication and wet milling operation. The maximum flank wear, tool wear modes, as well as the average surface roughness were recorded and were subsequently studied as the machining performance attributes. The use of lubricants in both minimum quantity lubrication and wet modes led to reduced tool wear as compared with readings made under dry mode. However, under similar experimental conditions, no significant improvement was observed on the average surface roughness values.


2017 ◽  
Vol 51 (28) ◽  
pp. 3941-3953 ◽  
Author(s):  
Xiangyang Dong ◽  
Yung C Shin

High thermal conductivity is one important factor in the selection or development of ceramics or composite materials. Predicting the thermal conductivity would be useful to the design and application of such materials. In this paper, a multi-scale model is developed to predict the effective thermal conductivity in SiC particle-reinforced aluminum metal matrix composite. A coupled two-temperature molecular dynamics model is used to calculate the thermal conductivity of the Al/SiC interface. The electronic effects on the interfacial thermal conductivity are studied. A homogenized finite element model with embedded thin interfacial elements is used to predict the properties of bulk materials, considering the microstructure. The effects of temperatures, SiC particle sizes, and volume fractions on the thermal conductivity are also studied. A good agreement is found between prediction results and experimental measurements. The successful prediction of thermal conductivity could help a better understanding and an improvement of thermal transport within composites and ceramics.


Sign in / Sign up

Export Citation Format

Share Document