scholarly journals Fluctuation Relations for Molecular Motors

2010 ◽  
pp. 61-88 ◽  
Author(s):  
David Lacoste ◽  
Kirone Mallick
Author(s):  
Tim Oliver ◽  
Michelle Leonard ◽  
Juliet Lee ◽  
Akira Ishihara ◽  
Ken Jacobson

We are using video-enhanced light microscopy to investigate the pattern and magnitude of forces that fish keratocytes exert on flexible silicone rubber substrata. Our goal is a clearer understanding of the way molecular motors acting through the cytoskeleton co-ordinate their efforts into locomotion at cell velocities up to 1 μm/sec. Cell traction forces were previously observed as wrinkles(Fig.l) in strong silicone rubber films by Harris.(l) These forces are now measureable by two independant means.In the first of these assays, weakly crosslinked films are made, into which latex beads have been embedded.(Fig.2) These films report local cell-mediated traction forces as bead displacements in the plane of the film(Fig.3), which recover when the applied force is released. Calibrated flexible glass microneedles are then used to reproduce the translation of individual beads. We estimate the force required to distort these films to be 0.5 mdyne/μm of bead movement. Video-frame analysis of bead trajectories is providing data on the relative localisation, dissipation and kinetics of traction forces.


2007 ◽  
Vol 47 (supplement) ◽  
pp. S248
Author(s):  
Takuji Mashimo ◽  
Tomoyuki Yoshino ◽  
Shin-Ichi Aizawa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 146
Author(s):  
Alessandro Coretti ◽  
Lamberto Rondoni ◽  
Sara Bonella

We illustrate how, contrary to common belief, transient Fluctuation Relations (FRs) for systems in constant external magnetic field hold without the inversion of the field. Building on previous work providing generalized time-reversal symmetries for systems in parallel external magnetic and electric fields, we observe that the standard proof of these important nonequilibrium properties can be fully reinstated in the presence of net dissipation. This generalizes recent results for the FRs in orthogonal fields—an interesting but less commonly investigated geometry—and enables direct comparison with existing literature. We also present for the first time a numerical demonstration of the validity of the transient FRs with nonzero magnetic field via nonequilibrium molecular dynamics simulations of a realistic model of liquid NaCl.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Joseph J. Klobusicky ◽  
John Fricks ◽  
Peter R. Kramer

2021 ◽  
Vol 23 (14) ◽  
pp. 8525-8540
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

Ground-state and excited-state molecular dynamics simulations shed light on the rotation mechanism of small, light-driven molecular motors and predict motor performance. How fast can they rotate; how much torque and power can they generate?


Sign in / Sign up

Export Citation Format

Share Document