Fully Coupled Model of a Nonlinear Thin Plate Excited by Piezoelectric Actuators

Author(s):  
K.-H. Hoffmann ◽  
N. D. Botkin
2020 ◽  
Vol 579 ◽  
pp. 411894
Author(s):  
Valerio Apicella ◽  
Carmine Stefano Clemente ◽  
Daniele Davino ◽  
Damiano Leone ◽  
Ciro Visone

2001 ◽  
pp. 9-22
Author(s):  
Nikolai D. Botkin ◽  
Karl-Heinz Hoffmann

2003 ◽  
Vol 125 (1) ◽  
pp. 12-17 ◽  
Author(s):  
I. Hagiwara ◽  
D. W. Wang ◽  
Q. Z. Shi ◽  
R. S. Rao

A new analytical model is developed for the reduction of noise inside a cavity using distributed piezoelectric actuators. A modal coupling method is used to establish the governing equations of motion of the fully coupled acoustics-structure-piezoelectric patch system. Two performance functions relating “global” and “local” optimal control of sound pressure levels (SPL) respectively are applied to obtain the control laws. The discussions on associated control mechanism show that both the mechanisms of modal amplitude suppression and modal rearrangement may sometimes coexist in the implementation of optimal noise control.


2021 ◽  
Author(s):  
Anupam Gupta ◽  
Sudhakar Tallavajhula ◽  
Sachin Mathakari

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 808 ◽  
Author(s):  
Fernando De Sales ◽  
David E. Rother

The study introduces a new atmosphere-land-aquifer coupled model and evaluates terrestrial water storage (TWS) simulations for Southern California between 2007 and 2016. It also examines the relationship between precipitation, groundwater, and soil moisture anomalies for the two primary aquifer systems in the study area, namely the Coastal Basin and the Basin and Range aquifers. Two model designs are introduced, a partially-coupled model forced by reanalysis atmospheric data, and a fully-coupled model, in which the atmospheric conditions were simulated. Both models simulate the temporal variability of TWS anomaly in the study area well (R2 ≥ 0.87, P < 0.01). In general, the partially-coupled model outperformed the fully-coupled model as the latter overestimated precipitation, which compromised soil and aquifer recharge and discharge. Simulations also showed that the drought experienced in the area between 2012 and 2016 caused a decline in TWS, evapotranspiration, and runoff of approximately 24%, 65%, and 11%, and 20%, 72% and 8% over the two aquifer systems, respectively. Results indicate that the models first introduced in this study can be a useful tool to further our understanding of terrestrial water storage variability at regional scales.


Sign in / Sign up

Export Citation Format

Share Document